Statistical inference for Linear Stochastic Approximation with Markovian Noise
- URL: http://arxiv.org/abs/2505.19102v1
- Date: Sun, 25 May 2025 11:43:28 GMT
- Title: Statistical inference for Linear Stochastic Approximation with Markovian Noise
- Authors: Sergey Samsonov, Marina Sheshukova, Eric Moulines, Alexey Naumov,
- Abstract summary: We derive non-asymptotic Berry-Esseen bounds for averaged iterates of the Linear Approximation (LSA) algorithm driven by the Markovian noise.<n>Our work provides the first non-asymptotic guarantees on the rate of convergence of bootstrap-based confidence intervals for approximation with Markov noise.
- Score: 16.136756322711545
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper we derive non-asymptotic Berry-Esseen bounds for Polyak-Ruppert averaged iterates of the Linear Stochastic Approximation (LSA) algorithm driven by the Markovian noise. Our analysis yields $\mathcal{O}(n^{-1/4})$ convergence rates to the Gaussian limit in the Kolmogorov distance. We further establish the non-asymptotic validity of a multiplier block bootstrap procedure for constructing the confidence intervals, guaranteeing consistent inference under Markovian sampling. Our work provides the first non-asymptotic guarantees on the rate of convergence of bootstrap-based confidence intervals for stochastic approximation with Markov noise. Moreover, we recover the classical rate of order $\mathcal{O}(n^{-1/8})$ up to logarithmic factors for estimating the asymptotic variance of the iterates of the LSA algorithm.
Related papers
- Almost Sure Convergence Rates and Concentration of Stochastic Approximation and Reinforcement Learning with Markovian Noise [31.241889735283166]
We provide the first almost sure convergence rate for $Q$-learning with Markovian samples without count-based learning rates.
We also provide the first concentration bound for off-policy temporal difference learning with Markovian samples.
arXiv Detail & Related papers (2024-11-20T21:09:09Z) - Asymptotic and Finite Sample Analysis of Nonexpansive Stochastic Approximations with Markovian Noise [20.474661995490365]
This work investigates approximations with merely nonexpansive operators.<n>In particular, we study nonexpansive approximations with Markovian noise.<n>As an application, we prove, for the first time, that the classical average reward temporal difference learning converges to a sample path dependent fixed point.
arXiv Detail & Related papers (2024-09-29T04:16:24Z) - Markov Chain Variance Estimation: A Stochastic Approximation Approach [14.883782513177094]
We consider the problem of estimating the variance of a function defined on a Markov chain, an important step for statistical inference of the stationary mean.
We design a novel recursive estimator that requires $O(1)$ at each step, does not require any historical samples or any prior knowledge of run-length, and has optimal $O(frac1n) rate of convergence for the mean-squared error (MSE) with provable finite sample guarantees.
arXiv Detail & Related papers (2024-09-09T15:42:28Z) - The ODE Method for Stochastic Approximation and Reinforcement Learning with Markovian Noise [17.493808856903303]
One fundamental challenge in analyzing an approximation algorithm is to establish its stability.<n>We extend the celebrated Borkar-Meyn theorem for stability bounded from the Martingale difference noise setting to the Markovian noise setting.
arXiv Detail & Related papers (2024-01-15T17:20:17Z) - First Order Methods with Markovian Noise: from Acceleration to Variational Inequalities [91.46841922915418]
We present a unified approach for the theoretical analysis of first-order variation methods.
Our approach covers both non-linear gradient and strongly Monte Carlo problems.
We provide bounds that match the oracle strongly in the case of convex method optimization problems.
arXiv Detail & Related papers (2023-05-25T11:11:31Z) - Utilising the CLT Structure in Stochastic Gradient based Sampling :
Improved Analysis and Faster Algorithms [14.174806471635403]
We consider approximations of sampling algorithms, such as Gradient Langevin Dynamics (SGLD) and the Random Batch Method (RBM) for Interacting Particle Dynamcs (IPD)
We observe that the noise introduced by the approximation is nearly Gaussian due to the Central Limit Theorem (CLT) while the driving Brownian motion is exactly Gaussian.
We harness this structure to absorb the approximation error inside the diffusion process, and obtain improved convergence guarantees for these algorithms.
arXiv Detail & Related papers (2022-06-08T10:17:40Z) - Optimal variance-reduced stochastic approximation in Banach spaces [114.8734960258221]
We study the problem of estimating the fixed point of a contractive operator defined on a separable Banach space.
We establish non-asymptotic bounds for both the operator defect and the estimation error.
arXiv Detail & Related papers (2022-01-21T02:46:57Z) - Optimal and instance-dependent guarantees for Markovian linear stochastic approximation [47.912511426974376]
We show a non-asymptotic bound of the order $t_mathrmmix tfracdn$ on the squared error of the last iterate of a standard scheme.
We derive corollaries of these results for policy evaluation with Markov noise.
arXiv Detail & Related papers (2021-12-23T18:47:50Z) - A Stochastic Newton Algorithm for Distributed Convex Optimization [62.20732134991661]
We analyze a Newton algorithm for homogeneous distributed convex optimization, where each machine can calculate gradients of the same population objective.
We show that our method can reduce the number, and frequency, of required communication rounds compared to existing methods without hurting performance.
arXiv Detail & Related papers (2021-10-07T17:51:10Z) - High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise [51.31435087414348]
It is essential to theoretically guarantee that algorithms provide small objective residual with high probability.
Existing methods for non-smooth convex optimization have complexity bounds with dependence on confidence level.
We propose novel stepsize rules for two methods with gradient clipping.
arXiv Detail & Related papers (2021-06-10T17:54:21Z) - ROOT-SGD: Sharp Nonasymptotics and Near-Optimal Asymptotics in a Single Algorithm [71.13558000599839]
We study the problem of solving strongly convex and smooth unconstrained optimization problems using first-order algorithms.
We devise a novel, referred to as Recursive One-Over-T SGD, based on an easily implementable, averaging of past gradients.
We prove that it simultaneously achieves state-of-the-art performance in both a finite-sample, nonasymptotic sense and an sense.
arXiv Detail & Related papers (2020-08-28T14:46:56Z) - On Linear Stochastic Approximation: Fine-grained Polyak-Ruppert and
Non-Asymptotic Concentration [115.1954841020189]
We study the inequality and non-asymptotic properties of approximation procedures with Polyak-Ruppert averaging.
We prove a central limit theorem (CLT) for the averaged iterates with fixed step size and number of iterations going to infinity.
arXiv Detail & Related papers (2020-04-09T17:54:18Z) - Stochastic Approximation with Markov Noise: Analysis and applications in
reinforcement learning [0.0]
We present for the first time an convergence analysis of two time-scale approximation driven by "controlled" Markov noise.
We analyze the behavior of our framework by relating it to limiting differential inclusions in both time scales.
We obtain the first informative error bounds on function approximation for the policy evaluation algorithm.
arXiv Detail & Related papers (2020-04-08T03:59:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.