Markov Chain Variance Estimation: A Stochastic Approximation Approach
- URL: http://arxiv.org/abs/2409.05733v2
- Date: Sun, 22 Sep 2024 11:24:27 GMT
- Title: Markov Chain Variance Estimation: A Stochastic Approximation Approach
- Authors: Shubhada Agrawal, Prashanth L. A., Siva Theja Maguluri,
- Abstract summary: We consider the problem of estimating the variance of a function defined on a Markov chain, an important step for statistical inference of the stationary mean.
We design a novel recursive estimator that requires $O(1)$ at each step, does not require any historical samples or any prior knowledge of run-length, and has optimal $O(frac1n) rate of convergence for the mean-squared error (MSE) with provable finite sample guarantees.
- Score: 14.883782513177094
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider the problem of estimating the asymptotic variance of a function defined on a Markov chain, an important step for statistical inference of the stationary mean. We design a novel recursive estimator that requires $O(1)$ computation at each step, does not require storing any historical samples or any prior knowledge of run-length, and has optimal $O(\frac{1}{n})$ rate of convergence for the mean-squared error (MSE) with provable finite sample guarantees. Here, $n$ refers to the total number of samples generated. Our estimator is based on linear stochastic approximation of an equivalent formulation of the asymptotic variance in terms of the solution of the Poisson equation. We generalize our estimator in several directions, including estimating the covariance matrix for vector-valued functions, estimating the stationary variance of a Markov chain, and approximately estimating the asymptotic variance in settings where the state space of the underlying Markov chain is large. We also show applications of our estimator in average reward reinforcement learning (RL), where we work with asymptotic variance as a risk measure to model safety-critical applications. We design a temporal-difference type algorithm tailored for policy evaluation in this context. We consider both the tabular and linear function approximation settings. Our work paves the way for developing actor-critic style algorithms for variance-constrained RL.
Related papers
- Statistical Inference in Classification of High-dimensional Gaussian Mixture [1.2354076490479515]
We investigate the behavior of a general class of regularized convex classifiers in the high-dimensional limit.
Our focus is on the generalization error and variable selection properties of the estimators.
arXiv Detail & Related papers (2024-10-25T19:58:36Z) - Multi-Fidelity Covariance Estimation in the Log-Euclidean Geometry [0.0]
We introduce a multi-fidelity estimator of covariance matrices that employs the log-Euclidean geometry of the symmetric positive-definite manifold.
We develop an optimal sample allocation scheme that minimizes the mean-squared error of the estimator given a fixed budget.
Evaluations of our approach using data from physical applications demonstrate more accurate metric learning and speedups of more than one order of magnitude compared to benchmarks.
arXiv Detail & Related papers (2023-01-31T16:33:46Z) - Statistical Inference of Constrained Stochastic Optimization via Sketched Sequential Quadratic Programming [53.63469275932989]
We consider online statistical inference of constrained nonlinear optimization problems.
We apply the Sequential Quadratic Programming (StoSQP) method to solve these problems.
arXiv Detail & Related papers (2022-05-27T00:34:03Z) - Optimal variance-reduced stochastic approximation in Banach spaces [114.8734960258221]
We study the problem of estimating the fixed point of a contractive operator defined on a separable Banach space.
We establish non-asymptotic bounds for both the operator defect and the estimation error.
arXiv Detail & Related papers (2022-01-21T02:46:57Z) - Optimal policy evaluation using kernel-based temporal difference methods [78.83926562536791]
We use kernel Hilbert spaces for estimating the value function of an infinite-horizon discounted Markov reward process.
We derive a non-asymptotic upper bound on the error with explicit dependence on the eigenvalues of the associated kernel operator.
We prove minimax lower bounds over sub-classes of MRPs.
arXiv Detail & Related papers (2021-09-24T14:48:20Z) - Heavy-tailed Streaming Statistical Estimation [58.70341336199497]
We consider the task of heavy-tailed statistical estimation given streaming $p$ samples.
We design a clipped gradient descent and provide an improved analysis under a more nuanced condition on the noise of gradients.
arXiv Detail & Related papers (2021-08-25T21:30:27Z) - On Stochastic Moving-Average Estimators for Non-Convex Optimization [105.22760323075008]
In this paper, we demonstrate the power of a widely used estimator based on moving average (SEMA) problems.
For all these-the-art results, we also present the results for all these-the-art problems.
arXiv Detail & Related papers (2021-04-30T08:50:24Z) - $\gamma$-ABC: Outlier-Robust Approximate Bayesian Computation Based on a
Robust Divergence Estimator [95.71091446753414]
We propose to use a nearest-neighbor-based $gamma$-divergence estimator as a data discrepancy measure.
Our method achieves significantly higher robustness than existing discrepancy measures.
arXiv Detail & Related papers (2020-06-13T06:09:27Z) - Statistical Inference for Model Parameters in Stochastic Gradient
Descent [45.29532403359099]
gradient descent coefficients (SGD) has been widely used in statistical estimation for large-scale data due to its computational and memory efficiency.
We investigate the problem of statistical inference of true model parameters based on SGD when the population loss function is strongly convex and satisfies certain conditions.
arXiv Detail & Related papers (2016-10-27T07:04:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.