DeCoDe: Defer-and-Complement Decision-Making via Decoupled Concept Bottleneck Models
- URL: http://arxiv.org/abs/2505.19220v1
- Date: Sun, 25 May 2025 16:34:45 GMT
- Title: DeCoDe: Defer-and-Complement Decision-Making via Decoupled Concept Bottleneck Models
- Authors: Chengbo He, Bochao Zou, Junliang Xing, Jiansheng Chen, Yuanchun Shi, Huimin Ma,
- Abstract summary: We propose a concept-driven framework for human-AI collaboration.<n>DeCoDe makes strategy decisions based on human-interpretable concept representations.<n>It supports three modes: autonomous AI prediction, deferral to humans, and human-AI collaborative complementarity.
- Score: 37.118479480792416
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In human-AI collaboration, a central challenge is deciding whether the AI should handle a task, be deferred to a human expert, or be addressed through collaborative effort. Existing Learning to Defer approaches typically make binary choices between AI and humans, neglecting their complementary strengths. They also lack interpretability, a critical property in high-stakes scenarios where users must understand and, if necessary, correct the model's reasoning. To overcome these limitations, we propose Defer-and-Complement Decision-Making via Decoupled Concept Bottleneck Models (DeCoDe), a concept-driven framework for human-AI collaboration. DeCoDe makes strategy decisions based on human-interpretable concept representations, enhancing transparency throughout the decision process. It supports three flexible modes: autonomous AI prediction, deferral to humans, and human-AI collaborative complementarity, selected via a gating network that takes concept-level inputs and is trained using a novel surrogate loss that balances accuracy and human effort. This approach enables instance-specific, interpretable, and adaptive human-AI collaboration. Experiments on real-world datasets demonstrate that DeCoDe significantly outperforms AI-only, human-only, and traditional deferral baselines, while maintaining strong robustness and interpretability even under noisy expert annotations.
Related papers
- Towards a Cascaded LLM Framework for Cost-effective Human-AI Decision-Making [55.2480439325792]
We present a cascaded LLM decision framework that adaptively delegates tasks across multiple tiers of expertise.<n>First, a deferral policy determines whether to accept the base model's answer or regenerate it with the large model.<n>Second, an abstention policy decides whether the cascade model response is sufficiently certain or requires human intervention.
arXiv Detail & Related papers (2025-06-13T15:36:22Z) - When Models Know More Than They Can Explain: Quantifying Knowledge Transfer in Human-AI Collaboration [79.69935257008467]
We introduce Knowledge Integration and Transfer Evaluation (KITE), a conceptual and experimental framework for Human-AI knowledge transfer capabilities.<n>We conduct the first large-scale human study (N=118) explicitly designed to measure it.<n>In our two-phase setup, humans first ideate with an AI on problem-solving strategies, then independently implement solutions, isolating model explanations' influence on human understanding.
arXiv Detail & Related papers (2025-06-05T20:48:16Z) - A Multi-Layered Research Framework for Human-Centered AI: Defining the Path to Explainability and Trust [2.4578723416255754]
Human-Centered AI (HCAI) emphasizes alignment with human values, while Explainable AI (XAI) enhances transparency by making AI decisions more understandable.<n>This paper presents a novel three-layered framework that bridges HCAI and XAI to establish a structured explainability paradigm.<n>Our findings advance Human-Centered Explainable AI (HCXAI), fostering AI systems that are transparent, adaptable, and ethically aligned.
arXiv Detail & Related papers (2025-04-14T01:29:30Z) - Towards Bidirectional Human-AI Alignment: A Systematic Review for Clarifications, Framework, and Future Directions [101.67121669727354]
Recent advancements in AI have highlighted the importance of guiding AI systems towards the intended goals, ethical principles, and values of individuals and groups, a concept broadly recognized as alignment.
The lack of clarified definitions and scopes of human-AI alignment poses a significant obstacle, hampering collaborative efforts across research domains to achieve this alignment.
We introduce a systematic review of over 400 papers published between 2019 and January 2024, spanning multiple domains such as Human-Computer Interaction (HCI), Natural Language Processing (NLP), Machine Learning (ML)
arXiv Detail & Related papers (2024-06-13T16:03:25Z) - Improving Intervention Efficacy via Concept Realignment in Concept Bottleneck Models [57.86303579812877]
Concept Bottleneck Models (CBMs) ground image classification on human-understandable concepts to allow for interpretable model decisions.
Existing approaches often require numerous human interventions per image to achieve strong performances.
We introduce a trainable concept realignment intervention module, which leverages concept relations to realign concept assignments post-intervention.
arXiv Detail & Related papers (2024-05-02T17:59:01Z) - Towards Human-AI Deliberation: Design and Evaluation of LLM-Empowered Deliberative AI for AI-Assisted Decision-Making [47.33241893184721]
In AI-assisted decision-making, humans often passively review AI's suggestion and decide whether to accept or reject it as a whole.<n>We propose Human-AI Deliberation, a novel framework to promote human reflection and discussion on conflicting human-AI opinions in decision-making.<n>Based on theories in human deliberation, this framework engages humans and AI in dimension-level opinion elicitation, deliberative discussion, and decision updates.
arXiv Detail & Related papers (2024-03-25T14:34:06Z) - A Decision Theoretic Framework for Measuring AI Reliance [23.353778024330165]
Humans frequently make decisions with the aid of artificially intelligent (AI) systems.
Researchers have identified ensuring that a human has appropriate reliance on an AI as a critical component of achieving complementary performance.
We propose a formal definition of reliance, based on statistical decision theory, which separates the concepts of reliance as the probability the decision-maker follows the AI's recommendation.
arXiv Detail & Related papers (2024-01-27T09:13:09Z) - Towards Effective Human-AI Decision-Making: The Role of Human Learning
in Appropriate Reliance on AI Advice [3.595471754135419]
We show the relationship between learning and appropriate reliance in an experiment with 100 participants.
This work provides fundamental concepts for analyzing reliance and derives implications for the effective design of human-AI decision-making.
arXiv Detail & Related papers (2023-10-03T14:51:53Z) - Learning Complementary Policies for Human-AI Teams [22.13683008398939]
We propose a framework for a novel human-AI collaboration for selecting advantageous course of action.
Our solution aims to exploit the human-AI complementarity to maximize decision rewards.
arXiv Detail & Related papers (2023-02-06T17:22:18Z) - Human-AI Collaboration via Conditional Delegation: A Case Study of
Content Moderation [47.102566259034326]
We propose conditional delegation as an alternative paradigm for human-AI collaboration.
We develop novel interfaces to assist humans in creating conditional delegation rules.
Our study demonstrates the promise of conditional delegation in improving model performance.
arXiv Detail & Related papers (2022-04-25T17:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.