VerifyThisBench: Generating Code, Specifications, and Proofs All at Once
- URL: http://arxiv.org/abs/2505.19271v1
- Date: Sun, 25 May 2025 19:00:52 GMT
- Title: VerifyThisBench: Generating Code, Specifications, and Proofs All at Once
- Authors: Xun Deng, Sicheng Zhong, Andreas Veneris, Fan Long, Xujie Si,
- Abstract summary: We introduce a new benchmark designed to evaluate large language models (LLMs) on end-to-end program verification tasks.<n>Our evaluation reveals that even state-of-the-art (SOTA) models, such as o3-mini, achieve a pass rate of less than 4%, with many outputs failing to compile.
- Score: 5.783301542485619
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have demonstrated remarkable progress in code generation, but many existing benchmarks are approaching saturation and offer little guarantee on the trustworthiness of the generated programs, offering limited insight into deeper reasoning capabilities. We introduce VerifyThisBench, a new benchmark designed to evaluate LLMs on end-to-end program verification tasks that require interpreting natural language problem descriptions, formulating formal specifications, generating code, and constructing correctness proofs. Our evaluation reveals that even state-of-the-art (SOTA) models, such as o3-mini, achieve a pass rate of less than 4%, with many outputs failing to compile. To reduce task complexity, we further propose VerifyThisBenchXS, a variant in which partial implementations or proofs are provided. We systematically assess SOTA models on both benchmarks, uncovering key strengths and limitations in their formal reasoning and verification capabilities.
Related papers
- STEPWISE-CODEX-Bench: Evaluating Complex Multi-Function Comprehension and Fine-Grained Execution Reasoning [6.282781900938977]
We present STEPWISE-CODEX-Bench (SX-Bench), a novel benchmark for complex multi-function understanding and fine-grained execution reasoning.<n>SX-Bench is highly discriminative, even the state-of-the-art OpenAI-O3 achieves only 78.37 percent accuracy on Hard-Reasoning tasks.
arXiv Detail & Related papers (2025-08-07T09:28:43Z) - CompassVerifier: A Unified and Robust Verifier for LLMs Evaluation and Outcome Reward [50.97588334916863]
We develop CompassVerifier, an accurate and robust lightweight verifier model for evaluation and outcome reward.<n>It demonstrates multi-domain competency spanning math, knowledge, and diverse reasoning tasks, with the capability to process various answer types.<n>We introduce VerifierBench benchmark comprising model outputs collected from multiple data sources, augmented through manual analysis of metaerror patterns to enhance CompassVerifier.
arXiv Detail & Related papers (2025-08-05T17:55:24Z) - AssertCoder: LLM-Based Assertion Generation via Multimodal Specification Extraction [32.14733357890831]
We propose AssertCoder, a novel unified framework that automatically generates high-quality SVAs.<n>AssertCoder employs a modality-sensitive preprocessing to parse heterogeneous specification formats.<n>The framework incorporates a mutation-based evaluation approach to assess assertion quality.
arXiv Detail & Related papers (2025-07-14T14:43:14Z) - VERINA: Benchmarking Verifiable Code Generation [47.9771074559674]
Large language models (LLMs) are increasingly integrated in software development.<n>Verifiable code generation offers a promising path to address this limitation.<n>Current benchmarks often lack support for end-to-end verifiable code generation.
arXiv Detail & Related papers (2025-05-29T06:12:52Z) - Training Language Models to Generate Quality Code with Program Analysis Feedback [66.0854002147103]
Code generation with large language models (LLMs) is increasingly adopted in production but fails to ensure code quality.<n>We propose REAL, a reinforcement learning framework that incentivizes LLMs to generate production-quality code.
arXiv Detail & Related papers (2025-05-28T17:57:47Z) - Scoring Verifiers: Evaluating Synthetic Verification for Code and Reasoning [59.25951947621526]
We propose an approach which can transform existing coding benchmarks into scoring and ranking datasets to evaluate the effectiveness of synthetic verifiers.<n>We release four new benchmarks (HE-R, HE-R+, MBPP-R, and MBPP-R+), and analyzed synthetic verification methods with standard, reasoning-based, and reward-based LLMs.<n>Our experiments show that reasoning can significantly improve test case generation and that scaling the number of test cases enhances the verification accuracy.
arXiv Detail & Related papers (2025-02-19T15:32:11Z) - Large Language Models Meet Symbolic Provers for Logical Reasoning Evaluation [24.081573908824353]
First-order logic (FOL) reasoning is pivotal for intelligent systems.<n>Existing benchmarks often rely on extensive human annotation or handcrafted templates.<n>We propose a novel framework called ProverGen that synergizes the generative strengths of Large Language Models with the rigor and precision of symbolic provers.
arXiv Detail & Related papers (2025-02-10T15:31:54Z) - FVEval: Understanding Language Model Capabilities in Formal Verification of Digital Hardware [4.480157114854711]
We present FVEval, the first comprehensive benchmark for characterizing large language models (LLMs) performance in tasks pertaining to formal verification (FV)
The benchmark consists of three sub-tasks that measure LLM capabilities at different levels.
We present both collections of expert-written verification collateral and methodologies to scalably generate synthetic examples aligned with FV.
arXiv Detail & Related papers (2024-10-15T21:48:57Z) - Improving LLM Reasoning through Scaling Inference Computation with Collaborative Verification [52.095460362197336]
Large language models (LLMs) struggle with consistent and accurate reasoning.
LLMs are trained primarily on correct solutions, reducing their ability to detect and learn from errors.
We propose a novel collaborative method integrating Chain-of-Thought (CoT) and Program-of-Thought (PoT) solutions for verification.
arXiv Detail & Related papers (2024-10-05T05:21:48Z) - AssertionBench: A Benchmark to Evaluate Large-Language Models for Assertion Generation [6.3585378855805725]
We present a novel benchmark to evaluate Large-Language Models' effectiveness for assertion generation.<n>AssertioBench contains 100 curated Verilog hardware designs from OpenCores and formally verified assertions for each design generated from GoldMine and HARM.
arXiv Detail & Related papers (2024-06-26T14:47:28Z) - Benchmarking Uncertainty Quantification Methods for Large Language Models with LM-Polygraph [83.90988015005934]
Uncertainty quantification is a key element of machine learning applications.<n>We introduce a novel benchmark that implements a collection of state-of-the-art UQ baselines.<n>We conduct a large-scale empirical investigation of UQ and normalization techniques across eleven tasks, identifying the most effective approaches.
arXiv Detail & Related papers (2024-06-21T20:06:31Z) - SORRY-Bench: Systematically Evaluating Large Language Model Safety Refusal [64.9938658716425]
SORRY-Bench is a proposed benchmark for evaluating large language models' (LLMs) ability to recognize and reject unsafe user requests.<n>First, existing methods often use coarse-grained taxonomy of unsafe topics, and are over-representing some fine-grained topics.<n>Second, linguistic characteristics and formatting of prompts are often overlooked, like different languages, dialects, and more -- which are only implicitly considered in many evaluations.
arXiv Detail & Related papers (2024-06-20T17:56:07Z) - Self-Evaluation Improves Selective Generation in Large Language Models [54.003992911447696]
We reformulate open-ended generation tasks into token-level prediction tasks.
We instruct an LLM to self-evaluate its answers.
We benchmark a range of scoring methods based on self-evaluation.
arXiv Detail & Related papers (2023-12-14T19:09:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.