Co-evolutionary Dynamics of Attack and Defence in Cybersecurity
- URL: http://arxiv.org/abs/2505.19338v1
- Date: Sun, 25 May 2025 22:11:24 GMT
- Title: Co-evolutionary Dynamics of Attack and Defence in Cybersecurity
- Authors: Adeela Bashir, Zia Ush Shamszaman, Zhao Song, The Anh Han,
- Abstract summary: This study uses an Evolutionary Game Theory framework to investigate the evolutionary dynamics of attacks and defences in cyberspace.<n>We find that systems with high defence intensities show stability with minimal attack frequencies, whereas low-defence environments show instability, and are vulnerable to attacks.<n>Our analysis suggests that adaptive cybersecurity strategies based on EGT can improve resource allocation, enhance system resilience, and reduce the overall risk of cyberattacks.
- Score: 7.949437760740007
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the evolving digital landscape, it is crucial to study the dynamics of cyberattacks and defences. This study uses an Evolutionary Game Theory (EGT) framework to investigate the evolutionary dynamics of attacks and defences in cyberspace. We develop a two-population asymmetric game between attacker and defender to capture the essential factors of costs, potential benefits, and the probability of successful defences. Through mathematical analysis and numerical simulations, we find that systems with high defence intensities show stability with minimal attack frequencies, whereas low-defence environments show instability, and are vulnerable to attacks. Furthermore, we find five equilibria, where the strategy pair always defend and attack emerged as the most likely stable state as cyber domain is characterised by a continuous battle between defenders and attackers. Our theoretical findings align with real-world data from past cyber incidents, demonstrating the interdisciplinary impact, such as fraud detection, risk management and cybersecurity decision-making. Overall, our analysis suggests that adaptive cybersecurity strategies based on EGT can improve resource allocation, enhance system resilience, and reduce the overall risk of cyberattacks. By incorporating real-world data, this study demonstrates the applicability of EGT in addressing the evolving nature of cyber threats and the need for secure digital ecosystems through strategic planning and proactive defence measures.
Related papers
- Beyond Vulnerabilities: A Survey of Adversarial Attacks as Both Threats and Defenses in Computer Vision Systems [5.787505062263962]
Adversarial attacks against computer vision systems have emerged as a critical research area that challenges the fundamental assumptions about neural network robustness and security.<n>This comprehensive survey examines the evolving landscape of adversarial techniques, revealing their dual nature as both sophisticated security threats and valuable defensive tools.
arXiv Detail & Related papers (2025-08-03T17:02:05Z) - Reinforcement Learning for Decision-Level Interception Prioritization in Drone Swarm Defense [56.47577824219207]
We present a case study demonstrating the practical advantages of reinforcement learning in addressing this challenge.<n>We introduce a high-fidelity simulation environment that captures realistic operational constraints.<n>Agent learns to coordinate multiple effectors for optimal interception prioritization.<n>We evaluate the learned policy against a handcrafted rule-based baseline across hundreds of simulated attack scenarios.
arXiv Detail & Related papers (2025-08-01T13:55:39Z) - CyGATE: Game-Theoretic Cyber Attack-Defense Engine for Patch Strategy Optimization [73.13843039509386]
This paper presents CyGATE, a game-theoretic framework modeling attacker-defender interactions.<n>CyGATE frames cyber conflicts as a partially observable game (POSG) across Cyber Kill Chain stages.<n>The framework's flexible architecture enables extension to multi-agent scenarios.
arXiv Detail & Related papers (2025-08-01T09:53:06Z) - A Survey of Model Extraction Attacks and Defenses in Distributed Computing Environments [55.60375624503877]
Model Extraction Attacks (MEAs) threaten modern machine learning systems by enabling adversaries to steal models, exposing intellectual property and training data.<n>This survey is motivated by the urgent need to understand how the unique characteristics of cloud, edge, and federated deployments shape attack vectors and defense requirements.<n>We systematically examine the evolution of attack methodologies and defense mechanisms across these environments, demonstrating how environmental factors influence security strategies in critical sectors such as autonomous vehicles, healthcare, and financial services.
arXiv Detail & Related papers (2025-02-22T03:46:50Z) - A Review of the Duality of Adversarial Learning in Network Intrusion: Attacks and Countermeasures [0.0]
Adversarial attacks, particularly those targeting vulnerabilities in deep learning models, present a nuanced and substantial threat to cybersecurity.<n>Our study delves into adversarial learning threats such as Data Poisoning, Test Time Evasion, and Reverse Engineering.<n>Our research lays the groundwork for strengthening defense mechanisms to address the potential breaches in network security and privacy posed by adversarial attacks.
arXiv Detail & Related papers (2024-12-18T14:21:46Z) - The MESA Security Model 2.0: A Dynamic Framework for Mitigating Stealth Data Exfiltration [0.0]
Stealth Data Exfiltration is a significant cyber threat characterized by covert infiltration, extended undetectability, and unauthorized dissemination of confidential data.
Our findings reveal that conventional defense-in-depth strategies often fall short in combating these sophisticated threats.
As we navigate this complex landscape, it is crucial to anticipate potential threats and continually update our defenses.
arXiv Detail & Related papers (2024-05-17T16:14:45Z) - Use of Graph Neural Networks in Aiding Defensive Cyber Operations [2.1874189959020427]
Graph Neural Networks have emerged as a promising approach for enhancing the effectiveness of defensive measures.
We look into the application of GNNs in aiding to break each stage of one of the most renowned attack life cycles, the Lockheed Martin Cyber Kill Chain.
arXiv Detail & Related papers (2024-01-11T05:56:29Z) - Designing an attack-defense game: how to increase robustness of
financial transaction models via a competition [69.08339915577206]
Given the escalating risks of malicious attacks in the finance sector, understanding adversarial strategies and robust defense mechanisms for machine learning models is critical.
We aim to investigate the current state and dynamics of adversarial attacks and defenses for neural network models that use sequential financial data as the input.
We have designed a competition that allows realistic and detailed investigation of problems in modern financial transaction data.
The participants compete directly against each other, so possible attacks and defenses are examined in close-to-real-life conditions.
arXiv Detail & Related papers (2023-08-22T12:53:09Z) - Deep Reinforcement Learning for Cyber System Defense under Dynamic
Adversarial Uncertainties [5.78419291062552]
We propose a data-driven deep reinforcement learning framework to learn proactive, context-aware defense countermeasures.
A dynamic defense optimization problem is formulated with multiple protective postures against different types of adversaries.
arXiv Detail & Related papers (2023-02-03T08:33:33Z) - Fixed Points in Cyber Space: Rethinking Optimal Evasion Attacks in the
Age of AI-NIDS [70.60975663021952]
We study blackbox adversarial attacks on network classifiers.
We argue that attacker-defender fixed points are themselves general-sum games with complex phase transitions.
We show that a continual learning approach is required to study attacker-defender dynamics.
arXiv Detail & Related papers (2021-11-23T23:42:16Z) - Reinforcement Learning for Feedback-Enabled Cyber Resilience [24.92055101652206]
Cyber resilience provides a new security paradigm that complements inadequate protection with resilience mechanisms.
A Cyber-Resilient Mechanism ( CRM) adapts to the known or zero-day threats and uncertainties in real-time.
We review the literature on RL for cyber resiliency and discuss the cyber-resilient defenses against three major types of vulnerabilities.
arXiv Detail & Related papers (2021-07-02T01:08:45Z) - Measurement-driven Security Analysis of Imperceptible Impersonation
Attacks [54.727945432381716]
We study the exploitability of Deep Neural Network-based Face Recognition systems.
We show that factors such as skin color, gender, and age, impact the ability to carry out an attack on a specific target victim.
We also study the feasibility of constructing universal attacks that are robust to different poses or views of the attacker's face.
arXiv Detail & Related papers (2020-08-26T19:27:27Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
This paper summarizes the latest research on adversarial attacks against security solutions based on machine learning techniques.
It is the first to discuss the unique challenges of implementing end-to-end adversarial attacks in the cyber security domain.
arXiv Detail & Related papers (2020-07-05T18:22:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.