論文の概要: FlashMD: long-stride, universal prediction of molecular dynamics
- arxiv url: http://arxiv.org/abs/2505.19350v1
- Date: Sun, 25 May 2025 22:34:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-27 16:58:43.064861
- Title: FlashMD: long-stride, universal prediction of molecular dynamics
- Title(参考訳): FlashMD:分子動力学の長期的、普遍的な予測
- Authors: Filippo Bigi, Sanggyu Chong, Agustinus Kristiadi, Michele Ceriotti,
- Abstract要約: 我々は,通常のMD時間ステップよりも1~2桁長いストライド上の位置とモーメントの進化を予測する手法であるFlashMDを提案する。
システム固有モデルと汎用モデルの両方を用いて, 平衡特性と時間依存特性の再現におけるFlashMDの精度を検証した。
- 参考スコア(独自算出の注目度): 4.10341947149624
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Molecular dynamics (MD) provides insights into atomic-scale processes by integrating over time the equations that describe the motion of atoms under the action of interatomic forces. Machine learning models have substantially accelerated MD by providing inexpensive predictions of the forces, but they remain constrained to minuscule time integration steps, which are required by the fast time scale of atomic motion. In this work, we propose FlashMD, a method to predict the evolution of positions and momenta over strides that are between one and two orders of magnitude longer than typical MD time steps. We incorporate considerations on the mathematical and physical properties of Hamiltonian dynamics in the architecture, generalize the approach to allow the simulation of any thermodynamic ensemble, and carefully assess the possible failure modes of such a long-stride MD approach. We validate FlashMD's accuracy in reproducing equilibrium and time-dependent properties, using both system-specific and general-purpose models, extending the ability of MD simulation to reach the long time scales needed to model microscopic processes of high scientific and technological relevance.
- Abstract(参考訳): 分子動力学(MD)は原子間力の作用の下での原子の運動を記述する方程式を時間とともに統合することで原子スケールの過程に関する洞察を提供する。
機械学習モデルは、力の安価な予測を提供することでMDを大幅に加速してきたが、原子運動の速い時間スケールによって要求される極小時間積分ステップに制限されている。
そこで本研究では,FlashMDの時間ステップよりも1~2桁長いストライド上の位置とモーメントの進化を予測する手法を提案する。
アーキテクチャにおけるハミルトン力学の数学的および物理的性質の考察を取り入れ、熱力学的アンサンブルのシミュレーションを可能にするためのアプローチを一般化し、そのような長いストライドMDアプローチの失敗モードを慎重に評価する。
システム固有モデルと汎用モデルの両方を用いて, 平衡特性と時間依存特性の再現におけるFlashMDの精度を検証する。
関連論文リスト
- BoostMD: Accelerating molecular sampling by leveraging ML force field features from previous time-steps [3.8214695776749013]
BoostMDは分子動力学シミュレーションを高速化するために設計されたサロゲートモデルアーキテクチャである。
実験の結果,BoostMDは参照モデルと比較して8倍のスピードアップを実現していることがわかった。
効率的な機能再利用と合理化されたアーキテクチャを組み合わせることで、BoostMDは大規模で長期の分子シミュレーションを行うための堅牢なソリューションを提供する。
論文 参考訳(メタデータ) (2024-12-21T20:52:36Z) - Force-Guided Bridge Matching for Full-Atom Time-Coarsened Dynamics of Peptides [17.559471937824767]
我々は、FBM(Force-Guided Bridge Matching)と呼ばれる条件付き生成モデルを提案する。
FBMはフル原子時間粗大化力学を学習し、ボルツマン制約分布を目標とする。
ペプチドからなる2つのデータセットの実験は、包括的メトリクスの観点から、我々の優位性を検証する。
論文 参考訳(メタデータ) (2024-08-27T15:07:27Z) - A Multi-Grained Symmetric Differential Equation Model for Learning Protein-Ligand Binding Dynamics [73.35846234413611]
薬物発見において、分子動力学(MD)シミュレーションは、結合親和性を予測し、輸送特性を推定し、ポケットサイトを探索する強力なツールを提供する。
我々は,数値MDを容易にし,タンパク質-リガンド結合ダイナミクスの正確なシミュレーションを提供する,最初の機械学習サロゲートであるNeuralMDを提案する。
従来の数値MDシミュレーションと比較して1K$times$ Speedupを実現することにより,NeuralMDの有効性と有効性を示す。
論文 参考訳(メタデータ) (2024-01-26T09:35:17Z) - Implicit Transfer Operator Learning: Multiple Time-Resolution Surrogates
for Molecular Dynamics [8.35780131268962]
シミュレーションプロセスのサロゲートを複数の時間分解能で学習するフレームワークであるImplict Transfer Operator (ITO) Learningを提案する。
また、全原子分子動力学を定量的にモデル化できる粗粒CG-SE3-ITOモデルを提案する。
論文 参考訳(メタデータ) (2023-05-29T12:19:41Z) - Conditional Generative Models for Simulation of EMG During Naturalistic
Movements [45.698312905115955]
本稿では、運動単位活性化電位波形を生成するために、逆向きに訓練された条件付き生成ニューラルネットワークを提案する。
本研究では,より少ない数の数値モデルの出力を高い精度で予測的に補間できることを実証する。
論文 参考訳(メタデータ) (2022-11-03T14:49:02Z) - Accurate Machine Learned Quantum-Mechanical Force Fields for
Biomolecular Simulations [51.68332623405432]
分子動力学(MD)シミュレーションは、化学的および生物学的プロセスに関する原子論的な洞察を可能にする。
近年,MDシミュレーションの代替手段として機械学習力場(MLFF)が出現している。
本研究は、大規模分子シミュレーションのための正確なMLFFを構築するための一般的なアプローチを提案する。
論文 参考訳(メタデータ) (2022-05-17T13:08:28Z) - Transformer Inertial Poser: Attention-based Real-time Human Motion
Reconstruction from Sparse IMUs [79.72586714047199]
本研究では,6つのIMUセンサからリアルタイムに全体動作を再構築する,注意に基づく深層学習手法を提案する。
提案手法は, 実装が簡単で, 小型でありながら, 定量的かつ質的に新しい結果が得られる。
論文 参考訳(メタデータ) (2022-03-29T16:24:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。