論文の概要: Fast and differentiable simulation of driven quantum systems
- arxiv url: http://arxiv.org/abs/2012.09282v1
- Date: Wed, 16 Dec 2020 21:43:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-20 10:54:05.295146
- Title: Fast and differentiable simulation of driven quantum systems
- Title(参考訳): 駆動量子系の高速かつ微分可能なシミュレーション
- Authors: Ross Shillito, Jonathan A. Gross, Agustin Di Paolo, \'Elie Genois and
Alexandre Blais
- Abstract要約: 我々は、ダイソン展開に基づく半解析手法を導入し、標準数値法よりもはるかに高速に駆動量子系を時間発展させることができる。
回路QEDアーキテクチャにおけるトランスモン量子ビットを用いた2量子ゲートの最適化結果を示す。
- 参考スコア(独自算出の注目度): 58.720142291102135
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The controls enacting logical operations on quantum systems are described by
time-dependent Hamiltonians that often include rapid oscillations. In order to
accurately capture the resulting time dynamics in numerical simulations, a very
small integration time step is required, which can severely impact the
simulation run-time. Here, we introduce a semi-analytic method based on the
Dyson expansion that allows us to time-evolve driven quantum systems much
faster than standard numerical integrators. This solver, which we name Dysolve,
efficiently captures the effect of the highly oscillatory terms in the system
Hamiltonian, significantly reducing the simulation's run time as well as its
sensitivity to the time-step size. Furthermore, this solver provides the exact
derivative of the time-evolution operator with respect to the drive amplitudes.
This key feature allows for optimal control in the limit of strong drives and
goes beyond common pulse-optimization approaches that rely on rotating-wave
approximations. As an illustration of our method, we show results of the
optimization of a two-qubit gate using transmon qubits in the circuit QED
architecture.
- Abstract(参考訳): 量子系で論理演算を実行する制御は時間依存ハミルトニアンによって記述され、しばしば高速振動を含む。
数値シミュレーションにおける結果の時間ダイナミクスを正確に把握するためには、非常に小さな積分時間ステップが必要であり、シミュレーション実行時間に大きな影響を及ぼす可能性がある。
本稿では,ダイソン展開に基づく半解析法を導入し,標準数値積分器よりも高速に時間発展駆動型量子システムを実現する。
このソルバーはdysolveと名付けられ、ハミルトニアン系における高振動項の効果を効率的に捉え、シミュレーションの実行時間と時間ステップサイズに対する感度を大幅に削減する。
さらに、この解法は、駆動振幅に関する時間発展作用素の正確な導出を提供する。
この重要な特徴は、強いドライブの限界における最適制御を可能にし、回転波近似に依存する一般的なパルス最適化アプローチを超える。
提案手法の例証として,回路QEDアーキテクチャにおけるトランスモン量子ビットを用いた2量子ゲートの最適化結果を示す。
関連論文リスト
- Hamiltonian simulation for hyperbolic partial differential equations by scalable quantum circuits [1.6268784011387605]
本稿では,ハミルトニアンシミュレーションのための量子回路を明示的に実装する手法を提案する。
構成回路の空間と時間複雑性は,従来のアルゴリズムよりも指数関数的に小さいことを示す。
論文 参考訳(メタデータ) (2024-02-28T15:17:41Z) - Pulse-controlled qubit in semiconductor double quantum dots [57.916342809977785]
単一電子電荷量子ビットの量子制御のための数値最適化多パルスフレームワークを提案する。
新規な制御方式は、キュービットを断熱的に操作すると同時に、高速で一般的な単一キュービット回転を行う能力も保持する。
論文 参考訳(メタデータ) (2023-03-08T19:00:02Z) - On Fast Simulation of Dynamical System with Neural Vector Enhanced
Numerical Solver [59.13397937903832]
ニューラルベクトル(NeurVec)と呼ばれる深層学習に基づく補正手法を提案する。
NeurVecは、統合エラーを補償し、シミュレーションでより大きなタイムステップサイズを可能にする。
様々な複雑な力学系ベンチマークの実験により、NeurVecは顕著な一般化能力を示すことが示された。
論文 参考訳(メタデータ) (2022-08-07T09:02:18Z) - Multistate Transition Dynamics by Strong Time-Dependent Perturbation in
NISQ era [0.0]
我々は,McLachlan変分原理をハイブリッド量子古典アルゴリズムに応用した量子計算手法を開発した。
ベンチマークデータと比較すると、遷移確率は1%以上の精度で得られる。
論文 参考訳(メタデータ) (2021-12-13T00:49:15Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
動的平均場理論(DMFT)は、ハバードモデルの局所グリーン関数をアンダーソン不純物のモデルにマッピングする。
不純物モデルを効率的に解くために、量子およびハイブリッド量子古典アルゴリズムが提案されている。
この研究は、ノイズの多いデジタル量子ハードウェアを用いたMott相転移の最初の計算を提示する。
論文 参考訳(メタデータ) (2021-12-10T17:32:15Z) - Time-dependent Hamiltonian Simulation of Highly Oscillatory Dynamics and
Superconvergence for Schr\"odinger Equation [2.973326951020451]
本稿では,高振動量子力学をシミュレーションするための簡単な量子アルゴリズムを提案する。
我々の知る限り、これは時間依存ハミルトニアンの急激な変化に敏感であり、通勤者スケーリングを示す最初の量子アルゴリズムである。
シュル・オーディンガー方程式のシミュレーションでは、超収束を示し、驚くべき2階収束率を達成する。
論文 参考訳(メタデータ) (2021-11-04T18:50:36Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
量子力学シミュレーションのための量子アルゴリズムは、伝統的に時間進化作用素のトロッター近似の実装に基づいている。
変分量子アルゴリズムは欠かせない代替手段となり、現在のハードウェア上での小規模なシミュレーションを可能にしている。
量子ゲートコストが明らかに削減されているにもかかわらず、現在の実装における変分法は量子的優位性をもたらすことはありそうにない。
論文 参考訳(メタデータ) (2021-08-09T18:00:05Z) - Control optimization for parametric hamiltonians by pulse reconstruction [21.723487348914958]
本稿では,ハミルトニアンに対する制御パルスを生成するのに必要な計算時間を短縮する手法を提案する。
我々は、所定のパラメータ値の離散セットに対して予め得られたパルスの集合から制御パルスを正確に再構成する単純なスキームを用いる。
論文 参考訳(メタデータ) (2021-02-24T14:47:09Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
最大21キュービットの雑音量子フーリエ変換プロセッサをシミュレートする。
我々は、デジタルエラーモデルに頼るのではなく、微視的な散逸過程を考慮に入れている。
動作中の消散機構によっては、入力状態の選択が量子アルゴリズムの性能に強い影響を与えることが示される。
論文 参考訳(メタデータ) (2021-02-08T14:55:44Z) - Efficient exploration of Hamiltonian parameter space for optimal control
of non-Markovian open quantum systems [0.0]
非マルコフ開量子系に対する最適制御列を効率的に設計する一般手法を提案する。
レーザーパルスの形状を最適化し、特定の状態の量子ドットを作成する。
論文 参考訳(メタデータ) (2021-01-08T16:02:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。