論文の概要: ChartLens: Fine-grained Visual Attribution in Charts
- arxiv url: http://arxiv.org/abs/2505.19360v1
- Date: Sun, 25 May 2025 23:17:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-27 16:58:43.07172
- Title: ChartLens: Fine-grained Visual Attribution in Charts
- Title(参考訳): ChartLens: チャートの細かいビジュアル属性
- Authors: Manan Suri, Puneet Mathur, Nedim Lipka, Franck Dernoncourt, Ryan A. Rossi, Dinesh Manocha,
- Abstract要約: Post-Hoc Visual Attribution for Chartsは、所定のチャート関連応答を検証する詳細なチャート要素を特定する。
グラフオブジェクトの識別にセグメンテーションに基づく手法を用いた新しいチャート属性アルゴリズムであるChartLensを提案する。
評価の結果,ChartLensの微粒化属性は26-66%向上した。
- 参考スコア(独自算出の注目度): 106.44872805609673
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The growing capabilities of multimodal large language models (MLLMs) have advanced tasks like chart understanding. However, these models often suffer from hallucinations, where generated text sequences conflict with the provided visual data. To address this, we introduce Post-Hoc Visual Attribution for Charts, which identifies fine-grained chart elements that validate a given chart-associated response. We propose ChartLens, a novel chart attribution algorithm that uses segmentation-based techniques to identify chart objects and employs set-of-marks prompting with MLLMs for fine-grained visual attribution. Additionally, we present ChartVA-Eval, a benchmark with synthetic and real-world charts from diverse domains like finance, policy, and economics, featuring fine-grained attribution annotations. Our evaluations show that ChartLens improves fine-grained attributions by 26-66%.
- Abstract(参考訳): マルチモーダル大言語モデル(MLLM)の増大する機能には、チャート理解のような高度なタスクがある。
しかし、これらのモデルはしばしば幻覚に悩まされ、生成されたテキストシーケンスは提供された視覚データと矛盾する。
これを解決するために、チャート関連応答を検証する詳細なチャート要素を識別する、チャートに対するポストホック視覚属性を導入する。
グラフオブジェクトの識別にセグメンテーションを用いた新しいチャート属性アルゴリズムであるChartLensを提案する。
さらに、金融、政策、経済学といったさまざまな分野の合成および実世界のチャートをベンチマークしたChartVA-Evalを紹介し、微粒な属性アノテーションを特徴とする。
評価の結果,ChartLensの微粒化属性は26-66%向上した。
関連論文リスト
- Socratic Chart: Cooperating Multiple Agents for Robust SVG Chart Understanding [14.75820681491341]
既存のベンチマークでは、真の視覚的推論ではなく、テキストベースのショートカットと確率的パターンマッチングに依存している。
グラフ画像をスケーラブルベクトルグラフ表現に変換する新しいフレームワークであるSocratic Chartを提案する。
我々のフレームワークは、グラフプリミティブを正確にキャプチャし、推論性能を向上させるために最先端モデルを上回る。
論文 参考訳(メタデータ) (2025-04-14T00:07:39Z) - RefChartQA: Grounding Visual Answer on Chart Images through Instruction Tuning [63.599057862999]
RefChartQAは、Chart Question Answering(ChartQA)とビジュアルグラウンドを統合した、新しいベンチマークである。
実験により,グラウンド化による空間認識を取り入れることで,応答精度が15%以上向上することが実証された。
論文 参考訳(メタデータ) (2025-03-29T15:50:08Z) - Graph-Based Multimodal Contrastive Learning for Chart Question Answering [11.828192162922436]
この研究は、チャートコンポーネントとその基盤構造間の関係を明示的にモデル化する、新しいマルチモーダルシーングラフフレームワークを導入している。
このフレームワークは、視覚グラフとテキストグラフの両方を統合し、構造的特徴と意味的特徴をキャプチャする。
グラフの対照的な学習戦略は、トランスフォーマーデコーダをソフトプロンプトとしてシームレスに組み込むことができるように、モジュール間のノード表現を整列させる。
論文 参考訳(メタデータ) (2025-01-08T06:27:07Z) - MSG-Chart: Multimodal Scene Graph for ChartQA [11.828192162922436]
グラフに明示的に表示されていない基礎データのパターンを持つチャート要素の複雑な分布のため、ChartQA(Automatic Chart Question Answering)は難しい。
チャート要素とそれらのパターンの関係を明示的に表すために、チャートのための共同マルチモーダルシーングラフを設計する。
提案するマルチモーダルシーングラフには視覚グラフとテキストグラフが含まれており,そのグラフから構造的および意味的知識を共同でキャプチャする。
論文 参考訳(メタデータ) (2024-08-09T04:11:23Z) - TinyChart: Efficient Chart Understanding with Visual Token Merging and Program-of-Thoughts Learning [83.58521787193293]
本稿では,3Bパラメータのみを用いたチャート理解のための効率的なMLLMであるTinyChartを提案する。
TinyChartは,1)プログラム・オブ・ソート(PoT)学習戦略による数値計算学習の負担軽減,2)ビジョン・トーケン・マージ・モジュールによる高解像度画像のためのビジョン・トランスフォーマーによって生成される長大な視覚特徴系列の削減という,効率的なチャート理解における2つの課題を克服した。
論文 参考訳(メタデータ) (2024-04-25T14:23:24Z) - ChartX & ChartVLM: A Versatile Benchmark and Foundation Model for Complicated Chart Reasoning [55.22996841790139]
我々は、チャート領域における既製のマルチモーダル言語モデル(MLLM)の能力をベンチマークする。
ChartXは18種類のチャートタイプ,7つのチャートタスク,22のディシプリナトピック,高品質なチャートデータを含むマルチモーダルな評価セットである。
我々は、解釈可能なパターンに強く依存するマルチモーダルタスクに対する新しい視点を提供するため、ChartVLMを開発した。
論文 参考訳(メタデータ) (2024-02-19T14:48:23Z) - ChartBench: A Benchmark for Complex Visual Reasoning in Charts [36.492851648081405]
MLLM(Multimodal Large Language Models)は画像の理解と生成に優れた能力を示している。
現在のベンチマークでは、限定的なチャートタイプと不適切なメトリクスのため、MLLMのチャート理解を正確に評価することができない。
複雑な視覚的推論によってチャートの理解とデータの信頼性を評価するための総合的なベンチマークであるChartBenchを提案する。
論文 参考訳(メタデータ) (2023-12-26T07:20:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。