論文の概要: RefChartQA: Grounding Visual Answer on Chart Images through Instruction Tuning
- arxiv url: http://arxiv.org/abs/2503.23131v1
- Date: Sat, 29 Mar 2025 15:50:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-01 14:35:59.446655
- Title: RefChartQA: Grounding Visual Answer on Chart Images through Instruction Tuning
- Title(参考訳): RefChartQA: インストラクションチューニングによるチャートイメージの視覚的回答
- Authors: Alexander Vogel, Omar Moured, Yufan Chen, Jiaming Zhang, Rainer Stiefelhagen,
- Abstract要約: RefChartQAは、Chart Question Answering(ChartQA)とビジュアルグラウンドを統合した、新しいベンチマークである。
実験により,グラウンド化による空間認識を取り入れることで,応答精度が15%以上向上することが実証された。
- 参考スコア(独自算出の注目度): 63.599057862999
- License:
- Abstract: Recently, Vision Language Models (VLMs) have increasingly emphasized document visual grounding to achieve better human-computer interaction, accessibility, and detailed understanding. However, its application to visualizations such as charts remains under-explored due to the inherent complexity of interleaved visual-numerical relationships in chart images. Existing chart understanding methods primarily focus on answering questions without explicitly identifying the visual elements that support their predictions. To bridge this gap, we introduce RefChartQA, a novel benchmark that integrates Chart Question Answering (ChartQA) with visual grounding, enabling models to refer elements at multiple granularities within chart images. Furthermore, we conduct a comprehensive evaluation by instruction-tuning 5 state-of-the-art VLMs across different categories. Our experiments demonstrate that incorporating spatial awareness via grounding improves response accuracy by over 15%, reducing hallucinations, and improving model reliability. Additionally, we identify key factors influencing text-spatial alignment, such as architectural improvements in TinyChart, which leverages a token-merging module for enhanced feature fusion. Our dataset is open-sourced for community development and further advancements. All models and code will be publicly available at https://github.com/moured/RefChartQA.
- Abstract(参考訳): 近年、視覚言語モデル(VLM)は、より優れた人間とコンピュータの相互作用、アクセシビリティ、そして詳細な理解を実現するために、文書の視覚的基盤をますます強調している。
しかし、グラフ画像におけるインターリーブされた視覚的・数的関係が本質的に複雑であるため、チャートのような可視化への応用はいまだに未解明のままである。
既存のチャート理解手法は主に、予測をサポートする視覚的要素を明確に特定せずに質問に答えることに焦点を当てている。
このギャップを埋めるために、我々はChart Question Answering(ChartQA)とビジュアルグラウンドティングを統合した新しいベンチマークであるRefChartQAを導入し、モデルがチャートイメージ内の複数の粒度の要素を参照できるようにする。
さらに,異なるカテゴリにまたがる5つの最先端VLMによる総合的な評価を行う。
実験により, 接地による空間認識を取り入れることで, 応答精度が15%以上向上し, 幻覚を低減し, モデルの信頼性が向上することが示された。
さらに、TinyChartのアーキテクチャ改善など、テキスト空間アライメントに影響を及ぼす重要な要素を識別する。
私たちのデータセットは、コミュニティ開発とさらなる進歩のためにオープンソース化されています。
すべてのモデルとコードはhttps://github.com/moured/RefChartQA.comで公開される。
関連論文リスト
- Multimodal Graph Constrastive Learning and Prompt for ChartQA [11.828192162922436]
ChartQAは、チャート要素の複雑な分布と、基礎となるデータに埋め込まれた暗黙のパターンによって、大きな課題を提示します。
我々は,チャート要素とその関連パターンの関係を明示的に表現した,チャート用の共同マルチモーダルシーングラフを開発した。
論文 参考訳(メタデータ) (2025-01-08T06:27:07Z) - ChartAdapter: Large Vision-Language Model for Chart Summarization [13.499376163294816]
ChartAdapterは、チャートとテキスト要約の間のギャップを埋めるために設計された軽量トランスフォーマーモジュールである。
LLMとChartAdapterを統合することで、エンドツーエンドのトレーニングと効率的なチャート要約を可能にします。
論文 参考訳(メタデータ) (2024-12-30T05:07:34Z) - VProChart: Answering Chart Question through Visual Perception Alignment Agent and Programmatic Solution Reasoning [13.011899331656018]
VProChartは、CQA(Chart Question Answering)の課題に対処するために設計された新しいフレームワークである。
軽量な視覚知覚アライメントエージェント(VPAgent)と,プログラム型ソリューション推論アプローチを統合している。
VProChartは既存のメソッドよりも優れており、チャートによる理解と推論の能力を強調している。
論文 参考訳(メタデータ) (2024-09-03T07:19:49Z) - MSG-Chart: Multimodal Scene Graph for ChartQA [11.828192162922436]
グラフに明示的に表示されていない基礎データのパターンを持つチャート要素の複雑な分布のため、ChartQA(Automatic Chart Question Answering)は難しい。
チャート要素とそれらのパターンの関係を明示的に表すために、チャートのための共同マルチモーダルシーングラフを設計する。
提案するマルチモーダルシーングラフには視覚グラフとテキストグラフが含まれており,そのグラフから構造的および意味的知識を共同でキャプチャする。
論文 参考訳(メタデータ) (2024-08-09T04:11:23Z) - Advancing Chart Question Answering with Robust Chart Component Recognition [18.207819321127182]
本稿では,バー,ライン,パイ,タイトル,伝説,軸といったコンポーネントを正確に識別し,分類することで,チャートコンポーネントの認識を強化する統一フレームワークを提案する。
また,Chartformerによって符号化されたチャート機能に与えられた質問を融合させ,正しい回答の根拠となる質問のガイダンスを活用する,新しい質問誘導型変形型コ・アテンション機構を提案する。
論文 参考訳(メタデータ) (2024-07-19T20:55:06Z) - On Pre-training of Multimodal Language Models Customized for Chart Understanding [83.99377088129282]
本稿では,MLLMのチャート理解を改善するために必要な学習過程について考察する。
詳細なチャート理解に適したMLLMであるCHOPINLLMを紹介する。
論文 参考訳(メタデータ) (2024-07-19T17:58:36Z) - TinyChart: Efficient Chart Understanding with Visual Token Merging and Program-of-Thoughts Learning [83.58521787193293]
本稿では,3Bパラメータのみを用いたチャート理解のための効率的なMLLMであるTinyChartを提案する。
TinyChartは,1)プログラム・オブ・ソート(PoT)学習戦略による数値計算学習の負担軽減,2)ビジョン・トーケン・マージ・モジュールによる高解像度画像のためのビジョン・トランスフォーマーによって生成される長大な視覚特徴系列の削減という,効率的なチャート理解における2つの課題を克服した。
論文 参考訳(メタデータ) (2024-04-25T14:23:24Z) - StructChart: On the Schema, Metric, and Augmentation for Visual Chart Understanding [54.45681512355684]
現在のチャート関連タスクは、ビジュアルチャートから情報を抽出するチャート認識か、抽出されたデータに基づいてチャート推論にフォーカスする。
我々はStructChartを紹介した。StructChartはStruct Triplet Representations(STR)を利用して、統一的でラベル効率のよいアプローチを実現する新しいフレームワークである。
論文 参考訳(メタデータ) (2023-09-20T12:51:13Z) - ChartReader: A Unified Framework for Chart Derendering and Comprehension
without Heuristic Rules [89.75395046894809]
ChartReaderは、チャートのデレンダリングと理解タスクをシームレスに統合する統合フレームワークです。
提案手法には,トランスフォーマーに基づくチャートコンポーネント検出モジュールと,チャートからXまでのタスクに対する事前学習型視覚言語モデルが組み込まれている。
提案するフレームワークは,チャート解析に係わる作業を大幅に削減し,ユニバーサルチャート理解モデルへの一歩を踏み出すことができる。
論文 参考訳(メタデータ) (2023-04-05T00:25:27Z) - ConsNet: Learning Consistency Graph for Zero-Shot Human-Object
Interaction Detection [101.56529337489417]
画像中のHuman, Action, Object>の形のHOIインスタンスを検出・認識することを目的としたHuman-Object Interaction (HOI) Detectionの問題点を考察する。
我々は、オブジェクト、アクション、インタラクション間の多レベルコンパレンシーは、稀な、あるいは以前には見られなかったHOIのセマンティック表現を生成するための強力な手がかりであると主張している。
提案モデルでは,人-対象のペアの視覚的特徴とHOIラベルの単語埋め込みを入力とし,それらを視覚-意味的関節埋め込み空間にマッピングし,類似度を計測して検出結果を得る。
論文 参考訳(メタデータ) (2020-08-14T09:11:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。