論文の概要: Consistency-based Abductive Reasoning over Perceptual Errors of Multiple Pre-trained Models in Novel Environments
- arxiv url: http://arxiv.org/abs/2505.19361v1
- Date: Sun, 25 May 2025 23:17:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-27 16:58:43.072779
- Title: Consistency-based Abductive Reasoning over Perceptual Errors of Multiple Pre-trained Models in Novel Environments
- Title(参考訳): 新規環境における複数の事前学習モデルの知覚誤差に対する一貫性に基づく帰納的推論
- Authors: Mario Leiva, Noel Ngu, Joshua Shay Kricheli, Aditya Taparia, Ransalu Senanayake, Paulo Shakarian, Nathaniel Bastian, John Corcoran, Gerardo Simari,
- Abstract要約: 本稿では,複数の事前学習モデルを活用することで,このリコール低減を緩和できるという仮説を述べる。
我々は,一貫性に基づく推論問題として,様々なモデルからの矛盾する予測を特定し,管理することの課題を定式化する。
本研究は,難解なシナリオにおいて,複数の不完全な推論者からの知識を堅牢に統合するための効果的なメカニズムとして,一貫性に基づく推論が有効であることを示す。
- 参考スコア(独自算出の注目度): 5.5855749614100825
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The deployment of pre-trained perception models in novel environments often leads to performance degradation due to distributional shifts. Although recent artificial intelligence approaches for metacognition use logical rules to characterize and filter model errors, improving precision often comes at the cost of reduced recall. This paper addresses the hypothesis that leveraging multiple pre-trained models can mitigate this recall reduction. We formulate the challenge of identifying and managing conflicting predictions from various models as a consistency-based abduction problem. The input predictions and the learned error detection rules derived from each model are encoded in a logic program. We then seek an abductive explanation--a subset of model predictions--that maximizes prediction coverage while ensuring the rate of logical inconsistencies (derived from domain constraints) remains below a specified threshold. We propose two algorithms for this knowledge representation task: an exact method based on Integer Programming (IP) and an efficient Heuristic Search (HS). Through extensive experiments on a simulated aerial imagery dataset featuring controlled, complex distributional shifts, we demonstrate that our abduction-based framework outperforms individual models and standard ensemble baselines, achieving, for instance, average relative improvements of approximately 13.6% in F1-score and 16.6% in accuracy across 15 diverse test datasets when compared to the best individual model. Our results validate the use of consistency-based abduction as an effective mechanism to robustly integrate knowledge from multiple imperfect reasoners in challenging, novel scenarios.
- Abstract(参考訳): 学習済みの知覚モデルの新規環境への展開は、しばしば分布シフトによる性能劣化を引き起こす。
メタ認知のための最近の人工知能アプローチでは、モデルエラーの特徴付けとフィルタリングに論理的ルールを使用しているが、精度の向上はリコールを減らすコストがかかることが多い。
本稿では,複数の事前学習モデルを活用することで,このリコール低減を緩和できるという仮説を述べる。
我々は,一貫性に基づく推論問題として,様々なモデルからの矛盾する予測を特定し,管理することの課題を定式化する。
各モデルから導出された入力予測と学習された誤り検出ルールを論理プログラムに符号化する。
モデル予測のサブセットは、予測カバレッジを最大化し、(ドメイン制約から派生した)論理的不整合の速度が指定されたしきい値以下であることを保証します。
Integer Programming (IP) に基づく正確な手法と効率的なヒューリスティック検索 (HS) の2つのアルゴリズムを提案する。
制御された複雑な分散シフトを特徴とする航空画像データセットのシミュレーション実験を通じて、当社の誘拐ベースのフレームワークは、個々のモデルと標準アンサンブルベースラインを上回り、例えば、F1スコアの平均相対的改善が13.6%、F1スコアが16.6%、ベストな個別モデルと比較して精度が16.6%であることを示す。
本研究は,難解なシナリオにおいて,複数の不完全な推論者からの知識を堅牢に統合するための効果的なメカニズムとして,一貫性に基づく推論が有効であることを示す。
関連論文リスト
- Self-Boost via Optimal Retraining: An Analysis via Approximate Message Passing [58.52119063742121]
独自の予測と潜在的にノイズの多いラベルを使ってモデルをトレーニングすることは、モデルパフォーマンスを改善するためのよく知られた戦略である。
本稿では,モデルの予測と提供ラベルを最適に組み合わせる方法について論じる。
我々の主な貢献は、現在のモデルの予測と与えられたラベルを組み合わせたベイズ最適集約関数の導出である。
論文 参考訳(メタデータ) (2025-05-21T07:16:44Z) - Generalization is not a universal guarantee: Estimating similarity to training data with an ensemble out-of-distribution metric [0.09363323206192666]
機械学習モデルの新しいデータへの一般化の失敗は、AIシステムの信頼性を制限する中核的な問題である。
本稿では、一般化可能性推定(SAGE)のための教師付きオートエンコーダを構築することにより、データの類似性を評価するための標準化されたアプローチを提案する。
モデル自体のトレーニングやテストデータセットのデータに適用しても,SAGEスコアのフィルタリング後にアウト・オブ・ボックスモデルの性能が向上することを示す。
論文 参考訳(メタデータ) (2025-02-22T19:21:50Z) - Awareness of uncertainty in classification using a multivariate model and multi-views [1.3048920509133808]
提案モデルでは,不確かさ予測を正規化し,予測と不確かさ推定の両方を計算する訓練を行う。
複数ビュー予測と不確かさと信頼度を考慮し、最終的な予測を計算する方法をいくつか提案した。
提案手法はクリーンでノイズの多いラベル付きCIFAR-10データセットを用いて検証した。
論文 参考訳(メタデータ) (2024-04-16T06:40:51Z) - Source-Free Unsupervised Domain Adaptation with Hypothesis Consolidation
of Prediction Rationale [53.152460508207184]
Source-Free Unsupervised Domain Adaptation (SFUDA)は、モデルがターゲットのドメインラベルやソースドメインデータにアクセスせずに新しいドメインに適応する必要がある、という課題である。
本稿では,各サンプルについて複数の予測仮説を考察し,各仮説の背景にある理論的根拠について考察する。
最適性能を達成するために,モデル事前適応,仮説統合,半教師付き学習という3段階の適応プロセスを提案する。
論文 参考訳(メタデータ) (2024-02-02T05:53:22Z) - Boosted Control Functions: Distribution generalization and invariance in confounded models [10.503777692702952]
非線形で非同定可能な構造関数が存在する場合でも分布の一般化を可能にする不変性という強い概念を導入する。
フレキシブルな機械学習手法を用いて,ブースト制御関数(BCF)を推定する制御Twicingアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-09T15:43:46Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
多重モード回帰は非定常過程の予測や分布の複雑な混合において重要である。
構造的放射基底関数ネットワークは回帰問題に対する複数の仮説予測器のアンサンブルとして提示される。
この構造モデルにより, このテッセルレーションを効率よく補間し, 複数の仮説対象分布を近似することが可能であることが証明された。
論文 参考訳(メタデータ) (2023-09-02T01:27:53Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
実世界の機械学習デプロイメントは、ソース(トレーニング)とターゲット(テスト)ディストリビューションのミスマッチによって特徴づけられる。
本研究では,ラベル付きソースデータとラベルなしターゲットデータのみを用いて,対象領域の精度を予測する手法を検討する。
本稿では,モデルの信頼度をしきい値として学習し,精度をラベルなし例のごく一部として予測する実践的手法である平均閾値保持信頼度(ATC)を提案する。
論文 参考訳(メタデータ) (2022-01-11T23:01:12Z) - MEMO: Test Time Robustness via Adaptation and Augmentation [131.28104376280197]
テスト時間ロバスト化の問題、すなわちモデルロバスト性を改善するためにテストインプットを用いて検討する。
最近の先行研究ではテスト時間適応法が提案されているが、それぞれ追加の仮定を導入している。
モデルが確率的で適応可能な任意のテスト環境で使用できるシンプルなアプローチを提案する。
論文 参考訳(メタデータ) (2021-10-18T17:55:11Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
補間分類器間のテストエラーの完全な分布を正確に計算する手法を開発した。
テストエラーは、最悪の補間モデルのテストエラーから大きく逸脱する、小さな典型的な$varepsilon*$に集中する傾向にある。
以上の結果から,統計的学習理論における通常の解析手法は,実際に観測された優れた一般化性能を捉えるのに十分な粒度にはならない可能性が示唆された。
論文 参考訳(メタデータ) (2020-06-22T21:12:31Z) - A comprehensive study on the prediction reliability of graph neural
networks for virtual screening [0.0]
本稿では,モデルアーキテクチャ,正規化手法,損失関数が分類結果の予測性能および信頼性に与える影響について検討する。
その結果,高い成功率を達成するためには,正則化と推論手法の正しい選択が重要であることが明らかとなった。
論文 参考訳(メタデータ) (2020-03-17T10:13:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。