論文の概要: CaseEdit: Enhancing Localized Commonsense Reasoning via Null-Space Constrained Knowledge Editing in Small Parameter Language Models
- arxiv url: http://arxiv.org/abs/2505.19383v1
- Date: Mon, 26 May 2025 00:54:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-27 16:58:43.082845
- Title: CaseEdit: Enhancing Localized Commonsense Reasoning via Null-Space Constrained Knowledge Editing in Small Parameter Language Models
- Title(参考訳): 事例編集:小パラメータ言語モデルにおけるNull-Space Constrained Knowledge Editingによる局所的コモンセンス推論の促進
- Authors: Varun Reddy, Yen-Ling Kuo,
- Abstract要約: 大規模言語モデル(LLM)は、事実的リコールと一般的な推論において強い性能を示すが、ユーザ固有の常識知識に適応するのに苦労する。
我々は、ローカル化されたパーソナライズされたコモンセンス知識編集を評価するための新しいデータセットと生成パイプラインであるCaseEditを紹介する。
以上の結果から,AlphaEditのような効果的な編集技術を用いたCaseEditを使用することで,小型モデルで高品質で文脈に敏感な常識知識を内部化することが可能であることが示唆された。
- 参考スコア(独自算出の注目度): 4.190739522901791
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) exhibit strong performance on factual recall and general reasoning but struggle to adapt to user-specific, commonsense knowledge, a challenge particularly acute in small-parameter settings where computational efficiency is prioritized. We introduce CaseEdit, a new dataset and generation pipeline for evaluating localized, personalized commonsense knowledge editing in small LLMs to address this. Built upon the ATOMIC20/20 commonsense graph, CaseEdit uses a multi-stage inference process to generate both typical and atypical contextual edits for household objects, paired with targeted evaluation questions across four axes: reliability, generalization, locality, and portability. We evaluate established knowledge editing methods using CaseEdit and demonstrate that AlphaEdit, a technique employing null-space projection to minimize interference with unrelated knowledge, consistently outperforms other methods when applied to an LLaMA 3.2 3B model, even in scalability tests, showing minimal ripple effects. Our results indicate that using CaseEdit with effective editing techniques like AlphaEdit allows small models to internalize high-quality, context-sensitive common-sense knowledge, paving the way for lightweight, personalized assistants.
- Abstract(参考訳): 大規模言語モデル(LLM)は、事実のリコールや一般的な推論において強いパフォーマンスを示すが、ユーザ固有の常識知識に適応するのに苦労する。
この問題に対処するために、小さなLLMにおいて、局所的でパーソナライズされたコモンセンス知識編集を評価するための新しいデータセットと生成パイプラインであるCaseEditを紹介した。
ATOMIC20/20 Commonsenseグラフに基づいて構築されたCaseEditは、多段階推論プロセスを使用して、家庭用オブジェクトの典型的および非定型的なコンテキスト編集を生成する。
我々は,CaseEditを用いた知識編集手法の評価を行い,非関係な知識との干渉を最小限に抑えるためにnull空間プロジェクションを用いたAlphaEditが,拡張性試験においてもLLaMA 3.2 3Bモデルに適用した場合,最小限のリップル効果を示す場合においても,他の手法よりも一貫して優れていることを示す。
この結果から,AlphaEditのような効果的な編集技術を用いたCaseEditを使用することで,小型モデルによる高品質でコンテキストに敏感な常識知識の内在化が可能になり,より軽量でパーソナライズされたアシスタントへの道が開かれたことが示唆された。
関連論文リスト
- Latent Knowledge Scalpel: Precise and Massive Knowledge Editing for Large Language Models [3.834827405473377]
大規模言語モデル(LLM)は、しばしば事前学習から不正確な情報や時代遅れの情報を保持し、推論中に誤った予測や偏りのある出力をもたらす。
我々はLLMエディタであるLatent Knowledge Scalpel(LKS)を紹介し、軽量なハイパーネットワークを用いて特定のエンティティの潜在知識を操作し、正確かつ大規模な編集を可能にする。
Llama-2とMistralで行った実験では、同時編集数が10,000に達したとしても、LKSは編集されたLLMの一般的な能力を保ちながら知識編集を効果的に行う。
論文 参考訳(メタデータ) (2025-08-01T03:51:43Z) - Retention analysis of edited knowledge after fine-tuning [5.440397659472036]
大規模な言語モデル(LLM)には膨大な量の知識が格納されており、事実の誤りを訂正したり、新たに取得した情報を組み込んだり、モデルの振る舞いを適応させたりする必要があることが多い。
モデル編集手法はこのような更新の効率的な解法として登場し、局所的で正確な知識修正を連続的な訓練よりも大幅に少ない計算コストで提供する。
しかし、これまで編集された知識に対する微調整の効果はよく分かっていない。
論文 参考訳(メタデータ) (2025-07-14T15:51:19Z) - MEMOIR: Lifelong Model Editing with Minimal Overwrite and Informed Retention for LLMs [82.34547399693966]
寿命の長いモデル編集のための既存の方法は、妥協の一般化、過去の編集の妨害、長い編集シーケンスへのスケールの失敗である。
残メモリを介して知識を注入する新しいスケーラブルなフレームワークであるMEMOIRを提案する。
MeMOIRは各編集をメモリパラメータの別のサブセットに限定し、編集間の干渉を最小限にする。
論文 参考訳(メタデータ) (2025-06-09T16:16:42Z) - UniEdit: A Unified Knowledge Editing Benchmark for Large Language Models [16.546605509744015]
オープンドメイン知識に基づく大規模言語モデル(LLM)編集のための統一ベンチマークであるUniEditを紹介する。
まず,5つのカテゴリにまたがる25の共通領域からエンティティを選択することで,サンプルを編集する。
編集における一般性や局所性の問題に対処するため,我々はNorborhood Multi-hop Chain Smpling (NMCS)アルゴリズムを設計する。
論文 参考訳(メタデータ) (2025-05-18T10:19:01Z) - The Mirage of Model Editing: Revisiting Evaluation in the Wild [70.17413507444704]
我々は、広く使われている質問応答(QA)データセットに対応する新しいベンチマークであるQAEditと、タスクに依存しない評価フレームワークであるWILDを紹介する。
単一の編集実験により、現在行われている編集手法は、以前報告したよりもかなり悪い結果が得られた。
論文 参考訳(メタデータ) (2025-02-16T15:57:55Z) - ComprehendEdit: A Comprehensive Dataset and Evaluation Framework for Multimodal Knowledge Editing [27.034072044001736]
大規模マルチモーダル言語モデル(MLLM)は、自然言語処理と視覚的理解に革命をもたらした。
現在の知識編集評価はスコープが限られており、バイアスがある可能性がある。
複数のデータセットから8つのタスクからなる総合的なベンチマークであるComprehendEditを紹介する。
論文 参考訳(メタデータ) (2024-12-17T11:41:49Z) - Uncovering Overfitting in Large Language Model Editing [35.55260822503773]
編集対象に不均等に高い確率を割り当てる編集オーバーフィット現象を同定し,検討する。
本稿では,新たな知識を振り返って編集されたモデルをガイドするマルチステージ推論制約モジュールを導入する,Learning to Inference (LTI) と呼ばれる新しいプラグイン・アンド・プレイ戦略を提案する。
論文 参考訳(メタデータ) (2024-10-10T11:09:00Z) - AlphaEdit: Null-Space Constrained Knowledge Editing for Language Models [63.209935157623946]
大型言語モデル(LLM)は、しばしば誤った知識や時代遅れの知識による幻覚を示す。
パラメータに適用する前に、保存された知識のnull空間に摂動を投影する新しいソリューションであるAlphaEditを紹介する。
我々は,この予測が保存知識を問うと,後編集後のLLMの出力が変化しないことを理論的に証明する。
論文 参考訳(メタデータ) (2024-10-03T10:06:27Z) - Has this Fact been Edited? Detecting Knowledge Edits in Language Models [5.260519479124422]
知識編集手法(KEs)は、事前学習から学んだ言語モデルの古いまたは不正確な知識を更新することができる。
生成されたアウトプットが編集された知識に基づいているか、あるいは事前学習からのファーストハンド知識に基づいているかを知ることは、生成モデルに対するユーザの信頼を高めることができる。
本稿では,言語モデルにおける編集された知識を検出する新しい課題を提案する。
論文 参考訳(メタデータ) (2024-05-04T22:02:24Z) - EVEDIT: Event-based Knowledge Editing with Deductive Editing Boundaries [69.72012539060731]
大規模言語モデル(LLM)における効率的な知識編集(KE)の理論的枠組みを導入する。
本稿では,事象をイベント記述と組み合わせたイベントベースの知識編集タスクを提案する。
編集モデルにおける不確実性を解消するための既存の設定よりもイベントベースの編集の方が優れていることを実証的に示す。
論文 参考訳(メタデータ) (2024-02-17T16:34:50Z) - The Butterfly Effect of Model Editing: Few Edits Can Trigger Large Language Models Collapse [58.0132400208411]
単一の編集でさえモデル崩壊を引き起こし、様々なベンチマークタスクで大幅なパフォーマンス低下を示す。
編集後の大規模言語モデルのベンチマークは、過激な時間とリソース集約である。
我々は、GPT-3.5を用いて、ハードケースに基づいた新しいデータセット、HardEditを開発した。
論文 参考訳(メタデータ) (2024-02-15T01:50:38Z) - On the Robustness of Editing Large Language Models [57.477943944826904]
大型言語モデル(LLM)はコミュニケーションAIの構築において重要な役割を担っているが、効率的な更新の課題に直面している。
この研究は、編集方法の長所と短所を理解し、コミュニケーション型AIの実践的応用を促進することを目的としている。
論文 参考訳(メタデータ) (2024-02-08T17:06:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。