Are Time-Series Foundation Models Deployment-Ready? A Systematic Study of Adversarial Robustness Across Domains
- URL: http://arxiv.org/abs/2505.19397v1
- Date: Mon, 26 May 2025 01:24:11 GMT
- Title: Are Time-Series Foundation Models Deployment-Ready? A Systematic Study of Adversarial Robustness Across Domains
- Authors: Jiawen Zhang, Zhenwei Zhang, Shun Zheng, Xumeng Wen, Jia Li, Jiang Bian,
- Abstract summary: Time Series Foundation Models (TSFMs) are pretrained on large-scale, cross-domain data and capable of zero-shot forecasting in new scenarios without further training.<n>Are TSFMs robust to adversarial input perturbations?<n>These perturbations could be exploited in man-in-the-middle attacks or data poisoning.
- Score: 23.9530536685668
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Time Series Foundation Models (TSFMs), which are pretrained on large-scale, cross-domain data and capable of zero-shot forecasting in new scenarios without further training, are increasingly adopted in real-world applications. However, as the zero-shot forecasting paradigm gets popular, a critical yet overlooked question emerges: Are TSFMs robust to adversarial input perturbations? Such perturbations could be exploited in man-in-the-middle attacks or data poisoning. To address this gap, we conduct a systematic investigation into the adversarial robustness of TSFMs. Our results show that even minimal perturbations can induce significant and controllable changes in forecast behaviors, including trend reversal, temporal drift, and amplitude shift, posing serious risks to TSFM-based services. Through experiments on representative TSFMs and multiple datasets, we reveal their consistent vulnerabilities and identify potential architectural designs, such as structural sparsity and multi-task pretraining, that may improve robustness. Our findings offer actionable guidance for designing more resilient forecasting systems and provide a critical assessment of the adversarial robustness of TSFMs.
Related papers
- Elucidated Rolling Diffusion Models for Probabilistic Weather Forecasting [52.6508222408558]
We introduce Elucidated Rolling Diffusion Models (ERDM)<n>ERDM is the first framework to unify a rolling forecast structure with the principled, performant design of Elucidated Diffusion Models (EDM)<n>On 2D Navier-Stokes simulations and ERA5 global weather forecasting at 1.5circ resolution, ERDM consistently outperforms key diffusion-based baselines.
arXiv Detail & Related papers (2025-06-24T21:44:31Z) - Can Time-Series Foundation Models Perform Building Energy Management Tasks? [5.450531952940644]
Building energy management tasks require processing and learning from a variety of time-series data.<n>Existing solutions rely on bespoke task- and data-specific models to perform these tasks.<n>Inspired by the transformative success of Large Language Models (LLMs), Time-Series Foundation Models (TSFMs) have the potential to change this.
arXiv Detail & Related papers (2025-06-12T19:45:10Z) - Probabilistic QoS Metric Forecasting in Delay-Tolerant Networks Using Conditional Diffusion Models on Latent Dynamics [5.038401442188212]
Active metric prediction, commonly employed in the maintenance and operation of DTN, could enhance network performance regarding latency, throughput, energy consumption, and dependability.<n>Traditional mean regression methods for time series forecasting cannot capture the data complexity adequately, resulting in deteriorated performance in operational tasks in DTNs such as routing.<n>This paper formulates the prediction of metrics in DTN as a probabilistic forecasting problem on multivariate time series, where one could quantify the uncertainty of forecasts by characterizing the distribution of these samples.
arXiv Detail & Related papers (2025-04-09T15:40:02Z) - Time Series Foundational Models: Their Role in Anomaly Detection and Prediction [0.0]
Time series foundational models (TSFM) have gained prominence in time series forecasting.<n>This paper critically evaluates the efficacy of TSFM in anomaly detection and prediction tasks.
arXiv Detail & Related papers (2024-12-26T17:15:30Z) - Future-Guided Learning: A Predictive Approach To Enhance Time-Series Forecasting [4.866362841501992]
We introduce Future-Guided Learning, an approach that enhances time-series event forecasting through a dynamic feedback mechanism inspired by predictive coding.<n>Our method involves two models: a detection model that analyzes future data to identify critical events and a forecasting model that predicts these events based on current data.<n>We validate our approach on a variety of tasks, demonstrating a 44.8% increase in AUC-ROC for seizure prediction using EEG data, and a 48.7% reduction in MSE for forecasting in nonlinear dynamical systems.
arXiv Detail & Related papers (2024-10-19T21:22:55Z) - Multi-Knowledge Fusion Network for Time Series Representation Learning [2.368662284133926]
We propose a hybrid architecture that combines prior knowledge with implicit knowledge of the relational structure within the MTS data.
The proposed architecture has shown promising results on multiple benchmark datasets and outperforms state-of-the-art forecasting methods by a significant margin.
arXiv Detail & Related papers (2024-08-22T14:18:16Z) - Towards Evaluating the Robustness of Visual State Space Models [63.14954591606638]
Vision State Space Models (VSSMs) have demonstrated remarkable performance in visual perception tasks.
However, their robustness under natural and adversarial perturbations remains a critical concern.
We present a comprehensive evaluation of VSSMs' robustness under various perturbation scenarios.
arXiv Detail & Related papers (2024-06-13T17:59:44Z) - Rating Multi-Modal Time-Series Forecasting Models (MM-TSFM) for Robustness Through a Causal Lens [10.103561529332184]
We focus on multi-modal time-series forecasting, where imprecision due to noisy or incorrect data can lead to erroneous predictions.
We introduce a rating methodology to assess the robustness of Multi-Modal Time-Series Forecasting Models.
arXiv Detail & Related papers (2024-06-12T17:39:16Z) - SFANet: Spatial-Frequency Attention Network for Weather Forecasting [54.470205739015434]
Weather forecasting plays a critical role in various sectors, driving decision-making and risk management.
Traditional methods often struggle to capture the complex dynamics of meteorological systems.
We propose a novel framework designed to address these challenges and enhance the accuracy of weather prediction.
arXiv Detail & Related papers (2024-05-29T08:00:15Z) - Performative Time-Series Forecasting [71.18553214204978]
We formalize performative time-series forecasting (PeTS) from a machine-learning perspective.
We propose a novel approach, Feature Performative-Shifting (FPS), which leverages the concept of delayed response to anticipate distribution shifts.
We conduct comprehensive experiments using multiple time-series models on COVID-19 and traffic forecasting tasks.
arXiv Detail & Related papers (2023-10-09T18:34:29Z) - DiffSTG: Probabilistic Spatio-Temporal Graph Forecasting with Denoising
Diffusion Models [53.67562579184457]
This paper focuses on probabilistic STG forecasting, which is challenging due to the difficulty in modeling uncertainties and complex dependencies.
We present the first attempt to generalize the popular denoising diffusion models to STGs, leading to a novel non-autoregressive framework called DiffSTG.
Our approach combines the intrinsic-temporal learning capabilities STNNs with the uncertainty measurements of diffusion models.
arXiv Detail & Related papers (2023-01-31T13:42:36Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
Probabilistic time series forecasting involves estimating the distribution of future based on its history.
We propose a deep state space model for probabilistic time series forecasting whereby the non-linear emission model and transition model are parameterized by networks.
We show in experiments that our model produces accurate and sharp probabilistic forecasts.
arXiv Detail & Related papers (2021-01-31T06:49:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.