Toward Physics-Informed Machine Learning for Data Center Operations: A Tropical Case Study
- URL: http://arxiv.org/abs/2505.19414v1
- Date: Mon, 26 May 2025 02:06:45 GMT
- Title: Toward Physics-Informed Machine Learning for Data Center Operations: A Tropical Case Study
- Authors: Ruihang Wang, Zhiwei Cao, Qingang Zhang, Rui Tan, Yonggang Wen, Tommy Leung, Stuart Kennedy, Justin Teoh,
- Abstract summary: Data centers in the tropical regions face unique challenges due to consistently high ambient temperature and elevated relative humidity.<n>This article proposes incorporating the physical characteristics of data centers into traditional data-driven machine learning solutions.
- Score: 11.177394570062894
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data centers are the backbone of computing capacity. Operating data centers in the tropical regions faces unique challenges due to consistently high ambient temperature and elevated relative humidity throughout the year. These conditions result in increased cooling costs to maintain the reliability of the computing systems. While existing machine learning-based approaches have demonstrated potential to elevate operations to a more proactive and intelligent level, their deployment remains dubious due to concerns about model extrapolation capabilities and associated system safety issues. To address these concerns, this article proposes incorporating the physical characteristics of data centers into traditional data-driven machine learning solutions. We begin by introducing the data center system, including the relevant multiphysics processes and the data-physics availability. Next, we outline the associated modeling and optimization problems and propose an integrated, physics-informed machine learning system to address them. Using the proposed system, we present relevant applications across varying levels of operational intelligence. A case study on an industry-grade tropical data center is provided to demonstrate the effectiveness of our approach. Finally, we discuss key challenges and highlight potential future directions.
Related papers
- A spectrum of physics-informed Gaussian processes for regression in
engineering [0.0]
Despite the growing availability of sensing and data in general, we remain unable to fully characterise many in-service engineering systems and structures from a purely data-driven approach.
This paper pursues the combination of machine learning technology and physics-based reasoning to enhance our ability to make predictive models with limited data.
arXiv Detail & Related papers (2023-09-19T14:39:03Z) - ECS -- an Interactive Tool for Data Quality Assurance [63.379471124899915]
We present a novel approach for the assurance of data quality.
For this purpose, the mathematical basics are first discussed and the approach is presented using multiple examples.
This results in the detection of data points with potentially harmful properties for the use in safety-critical systems.
arXiv Detail & Related papers (2023-07-10T06:49:18Z) - Advancing Reacting Flow Simulations with Data-Driven Models [50.9598607067535]
Key to effective use of machine learning tools in multi-physics problems is to couple them to physical and computer models.
The present chapter reviews some of the open opportunities for the application of data-driven reduced-order modeling of combustion systems.
arXiv Detail & Related papers (2022-09-05T16:48:34Z) - Machine Learning Empowered Intelligent Data Center Networking: A Survey [35.55535885962517]
This paper comprehensively investigates the application of machine learning to data center networking.
It covers flow prediction, flow classification, load balancing, resource management, routing optimization, and congestion control.
We design a quality assessment criteria called REBEL-3S to impartially measure the strengths and weaknesses of these research works.
arXiv Detail & Related papers (2022-02-28T05:27:22Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
In this paper we present a unified deployment pipeline and freedom-to-operate approach that supports all requirements while using basic cross-platform tensor framework and script language engines.
This approach however does not supply the needed procedures and pipelines for the actual deployment of machine learning capabilities in real production grade systems.
arXiv Detail & Related papers (2021-12-22T14:45:37Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
We consider the impact of the training set and its structure on the quality of the long-term prediction.
We show how an informed design of the training set, based on invariants of the system and the structure of the underlying attractor, significantly improves the resulting models.
arXiv Detail & Related papers (2021-12-15T20:09:20Z) - Data-Centric Engineering: integrating simulation, machine learning and
statistics. Challenges and Opportunities [1.3535770763481905]
Recent advances in machine learning, coupled with low-cost computation, have led to widespread multi-disciplinary research activity.
Mechanistic models, based on physical equations, and purely data-driven statistical approaches represent two ends of the modelling spectrum.
New hybrid, data-centric engineering approaches, leveraging the best of both worlds and integrating both simulations and data, are emerging as a powerful tool.
arXiv Detail & Related papers (2021-11-07T22:31:23Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
Data-driven modeling is an alternative paradigm that seeks to learn an approximation of the dynamics of a system using observations of the true system.
This paper provides a survey of the different ways to construct models of dynamical systems using neural networks.
In addition to the basic overview, we review the related literature and outline the most significant challenges from numerical simulations that this modeling paradigm must overcome.
arXiv Detail & Related papers (2021-11-02T10:51:42Z) - An Extensible Benchmark Suite for Learning to Simulate Physical Systems [60.249111272844374]
We introduce a set of benchmark problems to take a step towards unified benchmarks and evaluation protocols.
We propose four representative physical systems, as well as a collection of both widely used classical time-based and representative data-driven methods.
arXiv Detail & Related papers (2021-08-09T17:39:09Z) - A robust modeling framework for energy analysis of data centers [0.0]
Data centers are energy-intensive with significant and growing electricity demand.
Current models fail to provide consistent and high dimensional energy analysis for data centers.
This research aims to provide policy makers and data center energy analysts with comprehensive understanding of data center energy use and efficiency opportunities.
arXiv Detail & Related papers (2020-06-11T21:05:20Z) - Physical reservoir computing -- An introductory perspective [0.0]
Physical reservoir computing allows one to exploit the complex dynamics of physical systems as information-processing devices.
This paper aims to illustrate the potentials of the framework using examples from soft robotics.
arXiv Detail & Related papers (2020-05-03T05:39:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.