Structure Disruption: Subverting Malicious Diffusion-Based Inpainting via Self-Attention Query Perturbation
- URL: http://arxiv.org/abs/2505.19425v1
- Date: Mon, 26 May 2025 02:32:22 GMT
- Title: Structure Disruption: Subverting Malicious Diffusion-Based Inpainting via Self-Attention Query Perturbation
- Authors: Yuhao He, Jinyu Tian, Haiwei Wu, Jianqing Li,
- Abstract summary: Adversaries can exploit user images from social media to generate misleading or harmful content.<n>We propose Structure Disruption Attack (SDA), a powerful protection framework for safeguarding sensitive image regions against inpainting-based editing.
- Score: 14.837992188868858
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid advancement of diffusion models has enhanced their image inpainting and editing capabilities but also introduced significant societal risks. Adversaries can exploit user images from social media to generate misleading or harmful content. While adversarial perturbations can disrupt inpainting, global perturbation-based methods fail in mask-guided editing tasks due to spatial constraints. To address these challenges, we propose Structure Disruption Attack (SDA), a powerful protection framework for safeguarding sensitive image regions against inpainting-based editing. Building upon the contour-focused nature of self-attention mechanisms of diffusion models, SDA optimizes perturbations by disrupting queries in self-attention during the initial denoising step to destroy the contour generation process. This targeted interference directly disrupts the structural generation capability of diffusion models, effectively preventing them from producing coherent images. We validate our motivation through visualization techniques and extensive experiments on public datasets, demonstrating that SDA achieves state-of-the-art (SOTA) protection performance while maintaining strong robustness.
Related papers
- Active Adversarial Noise Suppression for Image Forgery Localization [56.98050814363447]
We introduce an Adversarial Noise Suppression Module (ANSM) that generate a defensive perturbation to suppress the attack effect of adversarial noise.<n>To our best knowledge, this is the first report of adversarial defense in image forgery localization tasks.
arXiv Detail & Related papers (2025-06-15T14:53:27Z) - Enhancing Facial Privacy Protection via Weakening Diffusion Purification [36.33027625681024]
Social media has led to the widespread sharing of individual portrait images, which pose serious privacy risks.<n>Recent methods employ diffusion models to generate adversarial face images for privacy protection.<n>We propose learning unconditional embeddings to increase the learning capacity for adversarial modifications.<n>We integrate an identity-preserving structure to maintain structural consistency between the original and generated images.
arXiv Detail & Related papers (2025-03-13T13:27:53Z) - AdvPaint: Protecting Images from Inpainting Manipulation via Adversarial Attention Disruption [25.06674328160838]
Malicious adversaries exploit diffusion models for inpainting tasks, such as replacing a specific region with a celebrity.<n>We propose ADVPAINT, a novel framework that generates adversarial perturbations that effectively disrupt the adversary's inpainting tasks.<n>Our experimental results demonstrate that ADVPAINT's perturbations are highly effective in disrupting the adversary's inpainting tasks, outperforming existing methods.
arXiv Detail & Related papers (2025-03-13T06:05:40Z) - GuardDoor: Safeguarding Against Malicious Diffusion Editing via Protective Backdoors [8.261182037130407]
GuardDoor is a novel and robust protection mechanism that fosters collaboration between image owners and model providers.<n>Our method demonstrates enhanced robustness against image preprocessing operations and is scalable for large-scale deployment.
arXiv Detail & Related papers (2025-03-05T22:21:44Z) - Safety Alignment Backfires: Preventing the Re-emergence of Suppressed Concepts in Fine-tuned Text-to-Image Diffusion Models [57.16056181201623]
Fine-tuning text-to-image diffusion models can inadvertently undo safety measures, causing models to relearn harmful concepts.<n>We present a novel but immediate solution called Modular LoRA, which involves training Safety Low-Rank Adaptation modules separately from Fine-Tuning LoRA components.<n>This method effectively prevents the re-learning of harmful content without compromising the model's performance on new tasks.
arXiv Detail & Related papers (2024-11-30T04:37:38Z) - ID-Guard: A Universal Framework for Combating Facial Manipulation via Breaking Identification [60.73617868629575]
misuse of deep learning-based facial manipulation poses a significant threat to civil rights.<n>To prevent this fraud at its source, proactive defense has been proposed to disrupt the manipulation process.<n>This paper proposes a universal framework for combating facial manipulation, termed ID-Guard.
arXiv Detail & Related papers (2024-09-20T09:30:08Z) - Pixel Is Not a Barrier: An Effective Evasion Attack for Pixel-Domain Diffusion Models [9.905296922309157]
Diffusion Models have emerged as powerful generative models for high-quality image synthesis, with many subsequent image editing techniques based on them.<n>Previous works have attempted to safeguard images from diffusion-based editing by adding imperceptible perturbations.<n>Our work proposes a novel attack framework, AtkPDM, which exploits vulnerabilities in denoising UNets and a latent optimization strategy to enhance the naturalness of adversarial images.
arXiv Detail & Related papers (2024-08-21T17:56:34Z) - Rethinking and Defending Protective Perturbation in Personalized Diffusion Models [21.30373461975769]
We study the fine-tuning process of personalized diffusion models (PDMs) through the lens of shortcut learning.
PDMs are susceptible to minor adversarial perturbations, leading to significant degradation when fine-tuned on corrupted datasets.
We propose a systematic defense framework that includes data purification and contrastive decoupling learning.
arXiv Detail & Related papers (2024-06-27T07:14:14Z) - Adv-Diffusion: Imperceptible Adversarial Face Identity Attack via Latent
Diffusion Model [61.53213964333474]
We propose a unified framework Adv-Diffusion that can generate imperceptible adversarial identity perturbations in the latent space but not the raw pixel space.
Specifically, we propose the identity-sensitive conditioned diffusion generative model to generate semantic perturbations in the surroundings.
The designed adaptive strength-based adversarial perturbation algorithm can ensure both attack transferability and stealthiness.
arXiv Detail & Related papers (2023-12-18T15:25:23Z) - Global Structure-Aware Diffusion Process for Low-Light Image Enhancement [64.69154776202694]
This paper studies a diffusion-based framework to address the low-light image enhancement problem.
We advocate for the regularization of its inherent ODE-trajectory.
Experimental evaluations reveal that the proposed framework attains distinguished performance in low-light enhancement.
arXiv Detail & Related papers (2023-10-26T17:01:52Z) - JPEG Compressed Images Can Bypass Protections Against AI Editing [48.340067730457584]
Imperceptible perturbations have been proposed as a means of protecting images from malicious editing.
We find that the aforementioned perturbations are not robust to JPEG compression.
arXiv Detail & Related papers (2023-04-05T05:30:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.