Surrogate Signals from Format and Length: Reinforcement Learning for Solving Mathematical Problems without Ground Truth Answers
- URL: http://arxiv.org/abs/2505.19439v3
- Date: Mon, 02 Jun 2025 03:24:21 GMT
- Title: Surrogate Signals from Format and Length: Reinforcement Learning for Solving Mathematical Problems without Ground Truth Answers
- Authors: Rihui Xin, Han Liu, Zecheng Wang, Yupeng Zhang, Dianbo Sui, Xiaolin Hu, Bingning Wang,
- Abstract summary: This research delves into the utilization of format and length as surrogate signals to train LLMs for mathematical problem-solving.<n>Our study shows that a reward function centered on format correctness alone can yield performance improvements comparable to the standard GRPO algorithm in early phases.<n>The resulting GRPO approach, leveraging format-length surrogate signals, not only matches but surpasses the performance of the standard GRPO algorithm.
- Score: 24.934432751910443
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models have achieved remarkable success in natural language processing tasks, with Reinforcement Learning playing a key role in adapting them to specific applications. However, obtaining ground truth answers for training LLMs in mathematical problem-solving is often challenging, costly, and sometimes unfeasible. This research delves into the utilization of format and length as surrogate signals to train LLMs for mathematical problem-solving, bypassing the need for traditional ground truth answers. Our study shows that a reward function centered on format correctness alone can yield performance improvements comparable to the standard GRPO algorithm in early phases. Recognizing the limitations of format-only rewards in the later phases, we incorporate length-based rewards. The resulting GRPO approach, leveraging format-length surrogate signals, not only matches but surpasses the performance of the standard GRPO algorithm relying on ground truth answers in certain scenarios, achieving 40.0% accuracy on AIME2024 with a 7B base model. Through systematic exploration and experimentation, this research not only offers a practical solution for training LLMs to solve mathematical problems and reducing the dependence on extensive ground truth data collection, but also reveals the essence of why our label-free approach succeeds: the powerful base model is like an excellent student who has already mastered mathematical and logical reasoning skills, but performs poorly on the test paper, it simply needs to develop good answering habits to achieve outstanding results in exams, to unlock the capabilities it already possesses.
Related papers
- RL for Reasoning by Adaptively Revealing Rationales [36.50924054394857]
Supervised fine-tuning (SFT) relies on dense ground-truth labels, which become increasingly costly as sequence length grows.<n>We address this by adaptive backtracking (AdaBack), a per-sample curriculum learning algorithm that reveals only a partial prefix of the target output during training.<n>We show that our adaptive curriculum over partial answers reliably solves problems that are otherwise intractable.
arXiv Detail & Related papers (2025-06-22T17:46:14Z) - Dancing with Critiques: Enhancing LLM Reasoning with Stepwise Natural Language Self-Critique [66.94905631175209]
We propose a novel inference-time scaling approach -- stepwise natural language self-critique (PANEL)<n>It employs self-generated natural language critiques as feedback to guide the step-level search process.<n>This approach bypasses the need for task-specific verifiers and the associated training overhead.
arXiv Detail & Related papers (2025-03-21T17:59:55Z) - R1-Searcher: Incentivizing the Search Capability in LLMs via Reinforcement Learning [87.30285670315334]
textbfR1-Searcher is a novel two-stage outcome-based RL approach designed to enhance the search capabilities of Large Language Models.<n>Our framework relies exclusively on RL, without requiring process rewards or distillation for a cold start.<n>Our experiments demonstrate that our method significantly outperforms previous strong RAG methods, even when compared to the closed-source GPT-4o-mini.
arXiv Detail & Related papers (2025-03-07T17:14:44Z) - Exploring RL-based LLM Training for Formal Language Tasks with Programmed Rewards [49.7719149179179]
This paper investigates the feasibility of using PPO for reinforcement learning (RL) from explicitly programmed reward signals.
We focus on tasks expressed through formal languages, such as programming, where explicit reward functions can be programmed to automatically assess quality of generated outputs.
Our results show that pure RL-based training for the two formal language tasks is challenging, with success being limited even for the simple arithmetic task.
arXiv Detail & Related papers (2024-10-22T15:59:58Z) - Improving LLM Reasoning through Scaling Inference Computation with Collaborative Verification [52.095460362197336]
Large language models (LLMs) struggle with consistent and accurate reasoning.
LLMs are trained primarily on correct solutions, reducing their ability to detect and learn from errors.
We propose a novel collaborative method integrating Chain-of-Thought (CoT) and Program-of-Thought (PoT) solutions for verification.
arXiv Detail & Related papers (2024-10-05T05:21:48Z) - S^3cMath: Spontaneous Step-level Self-correction Makes Large Language Models Better Mathematical Reasoners [23.713779973116733]
Self-correction is a method that can stimulate the potential reasoning abilities of large language models (LLMs)<n>We propose S$3$c-Math, which are able to perform Spontaneous Step-level Self-correction for Mathematical reasoning.
arXiv Detail & Related papers (2024-09-03T01:40:21Z) - MindStar: Enhancing Math Reasoning in Pre-trained LLMs at Inference Time [51.5039731721706]
MindStar is a purely inference-based searching method for large language models.
It formulates reasoning tasks as searching problems and proposes two search ideas to identify the optimal reasoning paths.
It significantly enhances the reasoning abilities of open-source models, such as Llama-2-13B and Mistral-7B, and achieves comparable performance to GPT-3.5 and Grok-1.
arXiv Detail & Related papers (2024-05-25T15:07:33Z) - FiDeLiS: Faithful Reasoning in Large Language Model for Knowledge Graph Question Answering [46.41364317172677]
Large Language Models (LLMs) are often challenged by generating erroneous or hallucinated responses.<n>We propose a unified framework, FiDeLiS, designed to improve the factuality of LLM responses by anchoring answers to verifiable reasoning steps retrieved from Knowledge Graphs.<n>Our method, as a training-free framework, not only improve the performance but also enhance the factuality and interpretability across different benchmarks.
arXiv Detail & Related papers (2024-05-22T17:56:53Z) - SatLM: Satisfiability-Aided Language Models Using Declarative Prompting [68.40726892904286]
We propose a new satisfiability-aided language modeling (SatLM) approach for improving the reasoning capabilities of large language models (LLMs)
We use an LLM to generate a declarative task specification rather than an imperative program and leverage an off-the-shelf automated theorem prover to derive the final answer.
We evaluate SATLM on 8 different datasets and show that it consistently outperforms program-aided LMs in the imperative paradigm.
arXiv Detail & Related papers (2023-05-16T17:55:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.