RL for Reasoning by Adaptively Revealing Rationales
- URL: http://arxiv.org/abs/2506.18110v1
- Date: Sun, 22 Jun 2025 17:46:14 GMT
- Title: RL for Reasoning by Adaptively Revealing Rationales
- Authors: Mohammad Hossein Amani, Aryo Lotfi, Nicolas Mario Baldwin, Samy Bengio, Mehrdad Farajtabar, Emmanuel Abbe, Robert West,
- Abstract summary: Supervised fine-tuning (SFT) relies on dense ground-truth labels, which become increasingly costly as sequence length grows.<n>We address this by adaptive backtracking (AdaBack), a per-sample curriculum learning algorithm that reveals only a partial prefix of the target output during training.<n>We show that our adaptive curriculum over partial answers reliably solves problems that are otherwise intractable.
- Score: 36.50924054394857
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose that reinforcement learning (RL) from partial expert demonstrations is not merely a training heuristic, but a promising framework for solving complex sequence generation tasks. Supervised fine-tuning (SFT) relies on dense ground-truth labels, which become increasingly costly as sequence length grows. RL, on the other hand, struggles with sparse rewards and a combinatorially large output space. We address this by introducing adaptive backtracking (AdaBack), a per-sample curriculum learning algorithm that reveals only a partial prefix of the target output during training. The supervision length is adjusted dynamically for each sample based on the model's past reward signal, allowing it to incrementally learn to complete reasoning chains by conditioning on correct partial solutions. We investigate this intermediate regime between SFT and RL and argue that per-sample curriculum learning is more than a trade-off between efficiency and generality, it can succeed in tasks with long sequences of latent dependencies where SFT and RL both fail to generalize. Using a synthetic task with latent parity constraints, we show that our adaptive curriculum over partial answers reliably solves problems that are otherwise intractable. On mathematical reasoning benchmarks (MATH, GSM8k), we find that curriculum learning enables models to solve problems that RL alone cannot, acquiring new reasoning capabilities through incremental exposure to partial solutions.
Related papers
- Scaling Up RL: Unlocking Diverse Reasoning in LLMs via Prolonged Training [121.5858973157225]
We investigate the effects of prolonged reinforcement learning on a small language model across a diverse set of reasoning domains.<n>We introduce controlled KL regularization, clipping ratio, and periodic reference policy resets as critical components for unlocking long-term performance gains.<n>Our model achieves significant improvements over strong baselines, including +14.7% on math, +13.9% on coding, and +54.8% on logic puzzle tasks.
arXiv Detail & Related papers (2025-07-16T17:59:24Z) - Curriculum Reinforcement Learning from Easy to Hard Tasks Improves LLM Reasoning [52.32193550674408]
We aim to improve the reasoning capabilities of language models via reinforcement learning (RL)<n>We propose to schedule tasks from easy to hard (E2H), allowing LLMs to build reasoning skills gradually.<n>E2H Reasoner significantly improves the reasoning ability of small LLMs (1.5B to 3B)
arXiv Detail & Related papers (2025-06-07T02:41:54Z) - TACO: Think-Answer Consistency for Optimized Long-Chain Reasoning and Efficient Data Learning via Reinforcement Learning in LVLMs [50.820065021136024]
DeepSeek R1 has significantly advanced complex reasoning for large language models (LLMs)<n>Recent methods have attempted to replicate R1's reasoning capabilities in multimodal settings.<n>We propose TACO, a novel reinforcement learning algorithm for visual reasoning.
arXiv Detail & Related papers (2025-05-27T06:30:48Z) - Surrogate Signals from Format and Length: Reinforcement Learning for Solving Mathematical Problems without Ground Truth Answers [24.934432751910443]
This research delves into the utilization of format and length as surrogate signals to train LLMs for mathematical problem-solving.<n>Our study shows that a reward function centered on format correctness alone can yield performance improvements comparable to the standard GRPO algorithm in early phases.<n>The resulting GRPO approach, leveraging format-length surrogate signals, not only matches but surpasses the performance of the standard GRPO algorithm.
arXiv Detail & Related papers (2025-05-26T02:56:22Z) - Exploring RL-based LLM Training for Formal Language Tasks with Programmed Rewards [49.7719149179179]
This paper investigates the feasibility of using PPO for reinforcement learning (RL) from explicitly programmed reward signals.
We focus on tasks expressed through formal languages, such as programming, where explicit reward functions can be programmed to automatically assess quality of generated outputs.
Our results show that pure RL-based training for the two formal language tasks is challenging, with success being limited even for the simple arithmetic task.
arXiv Detail & Related papers (2024-10-22T15:59:58Z) - Unlock the Correlation between Supervised Fine-Tuning and Reinforcement Learning in Training Code Large Language Models [12.656574142412484]
We make an attempt to understand the correlation between supervised fine-tuning and reinforcement learning.<n>We find that both atomic and synthetic functions are indispensable for SFT's generalization.
arXiv Detail & Related papers (2024-06-14T03:39:01Z) - Teaching Large Language Models to Reason with Reinforcement Learning [38.17625148525193]
Reinforcement Learning from Human Feedback (textbfRLHF) has emerged as a dominant approach for aligning LLM outputs with human preferences.
Inspired by the success of RLHF, we study the performance of multiple algorithms that learn from feedback.
arXiv Detail & Related papers (2024-03-07T16:36:29Z) - ReFT: Reasoning with Reinforced Fine-Tuning [9.80361828538909]
We propose a simple yet effective approach called Reinforced Fine-Tuning (ReFT) to enhance the generalizability of learning LLMs for reasoning.<n>ReFT first warmups the model with SFT, and then employs on-line reinforcement learning, specifically the PPO algorithm in this paper.<n>Experiments on GSM8K, MathQA, and SVAMP datasets show that ReFT significantly outperforms SFT.
arXiv Detail & Related papers (2024-01-17T04:43:21Z) - LaGR-SEQ: Language-Guided Reinforcement Learning with Sample-Efficient
Querying [71.86163159193327]
Large language models (LLMs) have recently demonstrated their impressive ability to provide context-aware responses via text.
This ability could potentially be used to predict plausible solutions in sequential decision making tasks pertaining to pattern completion.
We introduce LaGR, which uses this predictive ability of LLMs to propose solutions to tasks that have been partially completed by a primary reinforcement learning (RL) agent.
arXiv Detail & Related papers (2023-08-21T02:07:35Z) - Self-regulating Prompts: Foundational Model Adaptation without
Forgetting [112.66832145320434]
We introduce a self-regularization framework for prompting called PromptSRC.
PromptSRC guides the prompts to optimize for both task-specific and task-agnostic general representations.
arXiv Detail & Related papers (2023-07-13T17:59:35Z) - Text Generation with Efficient (Soft) Q-Learning [91.47743595382758]
Reinforcement learning (RL) offers a more flexible solution by allowing users to plug in arbitrary task metrics as reward.
We introduce a new RL formulation for text generation from the soft Q-learning perspective.
We apply the approach to a wide range of tasks, including learning from noisy/negative examples, adversarial attacks, and prompt generation.
arXiv Detail & Related papers (2021-06-14T18:48:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.