Residual Cross-Attention Transformer-Based Multi-User CSI Feedback with Deep Joint Source-Channel Coding
- URL: http://arxiv.org/abs/2505.19465v1
- Date: Mon, 26 May 2025 03:38:08 GMT
- Title: Residual Cross-Attention Transformer-Based Multi-User CSI Feedback with Deep Joint Source-Channel Coding
- Authors: Hengwei Zhang, Minghui Wu, Li Qiao, Ling Liu, Ziqi Han, Zhen Gao,
- Abstract summary: This letter proposes a deep-learning (DL)-based multi-user channel state information (CSI) feedback framework for massive multiple-input multiple-output systems.<n>We design a multi-user joint CSI feedback framework, whereby the CSI correlation of nearby users is utilized to reduce the feedback overhead.<n> Experimental results demonstrate the superiority of our methods in CSI feedback performance, with low network complexity and better scalability.
- Score: 11.692049253618546
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This letter proposes a deep-learning (DL)-based multi-user channel state information (CSI) feedback framework for massive multiple-input multiple-output systems, where the deep joint source-channel coding (DJSCC) is utilized to improve the CSI reconstruction accuracy. Specifically, we design a multi-user joint CSI feedback framework, whereby the CSI correlation of nearby users is utilized to reduce the feedback overhead. Under the framework, we propose a new residual cross-attention transformer architecture, which is deployed at the base station to further improve the CSI feedback performance. Moreover, to tackle the "cliff-effect" of conventional bit-level CSI feedback approaches, we integrated DJSCC into the multi-user CSI feedback, together with utilizing a two-stage training scheme to adapt to varying uplink noise levels. Experimental results demonstrate the superiority of our methods in CSI feedback performance, with low network complexity and better scalability.
Related papers
- Uplink Assisted Joint Channel Estimation and CSI Feedback: An Approach Based on Deep Joint Source-Channel Coding [20.422899602093786]
We propose an uplink assisted joint CE and and CSI feedback approach via deep learning for downlink CSI acquisition.<n>The proposed network adopts a deep joint source-channel coding architecture to mitigate the cliff effect encountered in the conventional separate source-channel coding.
arXiv Detail & Related papers (2025-04-15T03:29:24Z) - A Low-Overhead Incorporation-Extrapolation based Few-Shot CSI Feedback Framework for Massive MIMO Systems [45.22132581755417]
Accurate channel state information (CSI) is essential for downlink precoding in frequency division duplexing (FDD) massive multiple-input multiple-output (MIMO) systems.
However, obtaining CSI through feedback from the user equipment (UE) becomes challenging with the increasing scale of antennas and subcarriers.
Deep learning-based methods have emerged for compressing CSI but these methods require substantial collected samples.
Existing deep learning methods also suffer from dramatically growing feedback overhead owing to their focus on full-dimensional CSI feedback.
We propose a low-overhead-Extrapolation based Few-Shot CSI
arXiv Detail & Related papers (2023-12-07T06:01:47Z) - Joint Channel Estimation and Feedback with Masked Token Transformers in
Massive MIMO Systems [74.52117784544758]
This paper proposes an encoder-decoder based network that unveils the intrinsic frequency-domain correlation within the CSI matrix.
The entire encoder-decoder network is utilized for channel compression.
Our method outperforms state-of-the-art channel estimation and feedback techniques in joint tasks.
arXiv Detail & Related papers (2023-06-08T06:15:17Z) - Deep Learning-Based Rate-Splitting Multiple Access for Reconfigurable
Intelligent Surface-Aided Tera-Hertz Massive MIMO [56.022764337221325]
Reconfigurable intelligent surface (RIS) can significantly enhance the service coverage of Tera-Hertz massive multiple-input multiple-output (MIMO) communication systems.
However, obtaining accurate high-dimensional channel state information (CSI) with limited pilot and feedback signaling overhead is challenging.
This paper proposes a deep learning (DL)-based rate-splitting multiple access scheme for RIS-aided Tera-Hertz multi-user multiple access systems.
arXiv Detail & Related papers (2022-09-18T03:07:37Z) - Overview of Deep Learning-based CSI Feedback in Massive MIMO Systems [77.0986534024972]
Deep learning (DL)-based CSI feedback refers to CSI compression and reconstruction by a DL-based autoencoder and can greatly reduce feedback overhead.
The focus is on novel neural network architectures and utilization of communication expert knowledge to improve CSI feedback accuracy.
arXiv Detail & Related papers (2022-06-29T03:28:57Z) - Deep Learning for 1-Bit Compressed Sensing-based Superimposed CSI
Feedback [2.6831842796906393]
This paper proposes a deep learning scheme to improve the 1-bit compressed sensing-based superimposed CSI feedback.
The proposed scheme improves the recovery accuracy of the UL-US and downlink CSI with lower processing delay.
arXiv Detail & Related papers (2022-03-13T09:33:53Z) - Deep Learning-based Implicit CSI Feedback in Massive MIMO [68.81204537021821]
We propose a DL-based implicit feedback architecture to inherit the low-overhead characteristic, which uses neural networks (NNs) to replace the precoding matrix indicator (PMI) encoding and decoding modules.
For a single resource block (RB), the proposed architecture can save 25.0% and 40.0% of overhead compared with Type I codebook under two antenna configurations.
arXiv Detail & Related papers (2021-05-21T02:43:02Z) - Aggregated Network for Massive MIMO CSI Feedback [18.04633171156304]
ACRNet is designed to boost the feedback performance with network aggregation and parametric RuLU activation.
Experiments show that ACRNet outperforms loads of previous state-of-the-art feedback networks without any extra information.
arXiv Detail & Related papers (2021-01-17T08:19:40Z) - Cross-Attention in Coupled Unmixing Nets for Unsupervised Hyperspectral
Super-Resolution [79.97180849505294]
We propose a novel coupled unmixing network with a cross-attention mechanism, CUCaNet, to enhance the spatial resolution of HSI.
Experiments are conducted on three widely-used HS-MS datasets in comparison with state-of-the-art HSI-SR models.
arXiv Detail & Related papers (2020-07-10T08:08:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.