Aggregated Network for Massive MIMO CSI Feedback
- URL: http://arxiv.org/abs/2101.06618v1
- Date: Sun, 17 Jan 2021 08:19:40 GMT
- Title: Aggregated Network for Massive MIMO CSI Feedback
- Authors: Zhilin Lu, Hongyi He, Zhengyang Duan, Jintao Wang, Jian Song
- Abstract summary: ACRNet is designed to boost the feedback performance with network aggregation and parametric RuLU activation.
Experiments show that ACRNet outperforms loads of previous state-of-the-art feedback networks without any extra information.
- Score: 18.04633171156304
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In frequency division duplexing (FDD) mode, it is necessary to send the
channel state information (CSI) from user equipment to base station. The
downlink CSI is essential for the massive multiple-input multiple-output (MIMO)
system to acquire the potential gain. Recently, deep learning is widely adopted
to massive MIMO CSI feedback task and proved to be effective compared with
traditional compressed sensing methods. In this paper, a novel network named
ACRNet is designed to boost the feedback performance with network aggregation
and parametric RuLU activation. Moreover, valid approach to expand the network
architecture in exchange of better performance is first discussed in CSI
feedback task. Experiments show that ACRNet outperforms loads of previous
state-of-the-art feedback networks without any extra information.
Related papers
- A Low-Overhead Incorporation-Extrapolation based Few-Shot CSI Feedback Framework for Massive MIMO Systems [45.22132581755417]
Accurate channel state information (CSI) is essential for downlink precoding in frequency division duplexing (FDD) massive multiple-input multiple-output (MIMO) systems.
However, obtaining CSI through feedback from the user equipment (UE) becomes challenging with the increasing scale of antennas and subcarriers.
Deep learning-based methods have emerged for compressing CSI but these methods require substantial collected samples.
Existing deep learning methods also suffer from dramatically growing feedback overhead owing to their focus on full-dimensional CSI feedback.
We propose a low-overhead-Extrapolation based Few-Shot CSI
arXiv Detail & Related papers (2023-12-07T06:01:47Z) - Joint Channel Estimation and Feedback with Masked Token Transformers in
Massive MIMO Systems [74.52117784544758]
This paper proposes an encoder-decoder based network that unveils the intrinsic frequency-domain correlation within the CSI matrix.
The entire encoder-decoder network is utilized for channel compression.
Our method outperforms state-of-the-art channel estimation and feedback techniques in joint tasks.
arXiv Detail & Related papers (2023-06-08T06:15:17Z) - Deep Learning-Based Rate-Splitting Multiple Access for Reconfigurable
Intelligent Surface-Aided Tera-Hertz Massive MIMO [56.022764337221325]
Reconfigurable intelligent surface (RIS) can significantly enhance the service coverage of Tera-Hertz massive multiple-input multiple-output (MIMO) communication systems.
However, obtaining accurate high-dimensional channel state information (CSI) with limited pilot and feedback signaling overhead is challenging.
This paper proposes a deep learning (DL)-based rate-splitting multiple access scheme for RIS-aided Tera-Hertz multi-user multiple access systems.
arXiv Detail & Related papers (2022-09-18T03:07:37Z) - Overview of Deep Learning-based CSI Feedback in Massive MIMO Systems [77.0986534024972]
Deep learning (DL)-based CSI feedback refers to CSI compression and reconstruction by a DL-based autoencoder and can greatly reduce feedback overhead.
The focus is on novel neural network architectures and utilization of communication expert knowledge to improve CSI feedback accuracy.
arXiv Detail & Related papers (2022-06-29T03:28:57Z) - Deep Learning for 1-Bit Compressed Sensing-based Superimposed CSI
Feedback [2.6831842796906393]
This paper proposes a deep learning scheme to improve the 1-bit compressed sensing-based superimposed CSI feedback.
The proposed scheme improves the recovery accuracy of the UL-US and downlink CSI with lower processing delay.
arXiv Detail & Related papers (2022-03-13T09:33:53Z) - CSI Feedback with Model-Driven Deep Learning of Massive MIMO Systems [0.0]
We propose a two stages low rank (TSLR) CSI feedback scheme to reduce the feedback overhead based on model-driven deep learning.
Besides, we design a deep iterative neural network, named FISTA-Net, by unfolding the fast iterative shrinkage thresholding algorithm (FISTA) to achieve more efficient CSI feedback.
arXiv Detail & Related papers (2021-12-13T03:50:43Z) - Deep Learning-based Implicit CSI Feedback in Massive MIMO [68.81204537021821]
We propose a DL-based implicit feedback architecture to inherit the low-overhead characteristic, which uses neural networks (NNs) to replace the precoding matrix indicator (PMI) encoding and decoding modules.
For a single resource block (RB), the proposed architecture can save 25.0% and 40.0% of overhead compared with Type I codebook under two antenna configurations.
arXiv Detail & Related papers (2021-05-21T02:43:02Z) - Binarized Aggregated Network with Quantization: Flexible Deep Learning
Deployment for CSI Feedback in Massive MIMO System [22.068682756598914]
A novel network named aggregated channel reconstruction network (ACRNet) is designed to boost the feedback performance.
The elastic feedback scheme is proposed to flexibly adapt the network to meet different resource limitations.
Experiments show that the proposed ACRNet outperforms loads of previous state-of-the-art networks.
arXiv Detail & Related papers (2021-05-01T22:50:25Z) - A Markovian Model-Driven Deep Learning Framework for Massive MIMO CSI
Feedback [32.442094263278605]
Forward channel state information (CSI) plays a vital role in transmission optimization for massive multiple-input multiple-output (MIMO) communication systems.
Recent studies on the use of recurrent neural networks (RNNs) have demonstrated strong promises, though the cost of computation and memory remains high.
In this work, we exploit channel coherence in time to substantially improve the feedback efficiency.
arXiv Detail & Related papers (2020-09-20T16:26:12Z) - Cross-Attention in Coupled Unmixing Nets for Unsupervised Hyperspectral
Super-Resolution [79.97180849505294]
We propose a novel coupled unmixing network with a cross-attention mechanism, CUCaNet, to enhance the spatial resolution of HSI.
Experiments are conducted on three widely-used HS-MS datasets in comparison with state-of-the-art HSI-SR models.
arXiv Detail & Related papers (2020-07-10T08:08:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.