Beyond Segmentation: Confidence-Aware and Debiased Estimation of Ratio-based Biomarkers
- URL: http://arxiv.org/abs/2505.19585v1
- Date: Mon, 26 May 2025 06:58:19 GMT
- Title: Beyond Segmentation: Confidence-Aware and Debiased Estimation of Ratio-based Biomarkers
- Authors: Jiameng Li, Teodora Popordanoska, Sebastian G. Gruber, Frederik Maes, Matthew B. Blaschko,
- Abstract summary: Ratio-based biomarkers are widely used in clinical practice to support diagnosis, prognosis and treatment planning.<n>Existing methods provide only point estimates, offering no measure of uncertainty.<n>We propose a unified textitconfidence-aware framework for estimating ratio-based biomarkers.
- Score: 13.47001450005356
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ratio-based biomarkers -- such as the proportion of necrotic tissue within a tumor -- are widely used in clinical practice to support diagnosis, prognosis and treatment planning. These biomarkers are typically estimated from soft segmentation outputs by computing region-wise ratios. Despite the high-stakes nature of clinical decision making, existing methods provide only point estimates, offering no measure of uncertainty. In this work, we propose a unified \textit{confidence-aware} framework for estimating ratio-based biomarkers. We conduct a systematic analysis of error propagation in the segmentation-to-biomarker pipeline and identify model miscalibration as the dominant source of uncertainty. To mitigate this, we incorporate a lightweight, post-hoc calibration module that can be applied using internal hospital data without retraining. We leverage a tunable parameter $Q$ to control the confidence level of the derived bounds, allowing adaptation towards clinical practice. Extensive experiments show that our method produces statistically sound confidence intervals, with tunable confidence levels, enabling more trustworthy application of predictive biomarkers in clinical workflows.
Related papers
- Achieving Well-Informed Decision-Making in Drug Discovery: A Comprehensive Calibration Study using Neural Network-Based Structure-Activity Models [4.619907534483781]
computational models that predict drug-target interactions are valuable tools to accelerate the development of new therapeutic agents.
However, such models can be poorly calibrated, which results in unreliable uncertainty estimates.
We show that combining post hoc calibration method with well-performing uncertainty quantification approaches can boost model accuracy and calibration.
arXiv Detail & Related papers (2024-07-19T10:29:00Z) - Benchmarking Scalable Epistemic Uncertainty Quantification in Organ
Segmentation [7.313010190714819]
quantifying uncertainty associated with model predictions is crucial in critical clinical applications.
Deep learning based methods for automatic organ segmentation have shown promise in aiding diagnosis and treatment planning.
It is unclear which method is preferred in the medical image analysis setting.
arXiv Detail & Related papers (2023-08-15T00:09:33Z) - Benchmarking common uncertainty estimation methods with
histopathological images under domain shift and label noise [62.997667081978825]
In high-risk environments, deep learning models need to be able to judge their uncertainty and reject inputs when there is a significant chance of misclassification.
We conduct a rigorous evaluation of the most commonly used uncertainty and robustness methods for the classification of Whole Slide Images.
We observe that ensembles of methods generally lead to better uncertainty estimates as well as an increased robustness towards domain shifts and label noise.
arXiv Detail & Related papers (2023-01-03T11:34:36Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
We introduce DEviS, an easily implementable foundational model that seamlessly integrates into various medical image segmentation networks.
By leveraging subjective logic theory, we explicitly model probability and uncertainty for the problem of medical image segmentation.
DeviS incorporates an uncertainty-aware filtering module, which utilizes the metric of uncertainty-calibrated error to filter reliable data.
arXiv Detail & Related papers (2023-01-01T05:02:46Z) - Scalable Marginal Likelihood Estimation for Model Selection in Deep
Learning [78.83598532168256]
Marginal-likelihood based model-selection is rarely used in deep learning due to estimation difficulties.
Our work shows that marginal likelihoods can improve generalization and be useful when validation data is unavailable.
arXiv Detail & Related papers (2021-04-11T09:50:24Z) - Bayesian Uncertainty Estimation of Learned Variational MRI
Reconstruction [63.202627467245584]
We introduce a Bayesian variational framework to quantify the model-immanent (epistemic) uncertainty.
We demonstrate that our approach yields competitive results for undersampled MRI reconstruction.
arXiv Detail & Related papers (2021-02-12T18:08:14Z) - Increasing the efficiency of randomized trial estimates via linear
adjustment for a prognostic score [59.75318183140857]
Estimating causal effects from randomized experiments is central to clinical research.
Most methods for historical borrowing achieve reductions in variance by sacrificing strict type-I error rate control.
arXiv Detail & Related papers (2020-12-17T21:10:10Z) - Bayesian Neural Networks for Uncertainty Estimation of Imaging
Biomarkers [0.0]
We propose to propagate segmentation uncertainty to the statistical analysis to account for variations in segmentation confidence.
Our results for segmenting the liver in patients with diabetes mellitus clearly demonstrate the improvement of integrating biomarker uncertainty in the statistical inference.
arXiv Detail & Related papers (2020-08-28T14:34:12Z) - Diagnostic Uncertainty Calibration: Towards Reliable Machine Predictions
in Medical Domain [20.237847764018138]
We propose an evaluation framework for class probability estimates (CPEs) in the presence of label uncertainty.
We also formalize evaluation metrics for higher-order statistics, including inter-rater disagreement.
We show that our approach significantly enhances the reliability of uncertainty estimates.
arXiv Detail & Related papers (2020-07-03T12:54:08Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.