Preference Optimization by Estimating the Ratio of the Data Distribution
- URL: http://arxiv.org/abs/2505.19601v1
- Date: Mon, 26 May 2025 07:10:53 GMT
- Title: Preference Optimization by Estimating the Ratio of the Data Distribution
- Authors: Yeongmin Kim, Heesun Bae, Byeonghu Na, Il-Chul Moon,
- Abstract summary: We propose Bregman preference optimization (BPO) for ratio matching.<n>BPO subsumes DPO as a special case and offers tractable forms for all instances.<n>In experiments, unlike other probabilistic loss extensions such as $f$-DPO or $f$-PO, instances of BPO improve both win rate and entropy compared with DPO.
- Score: 12.378291609381677
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Direct preference optimization (DPO) is widely used as a simple and stable method for aligning large language models (LLMs) with human preferences. This paper investigates a generalized DPO loss that enables a policy model to match the target policy from a likelihood ratio estimation perspective. The ratio of the target policy provides a unique identification of the policy distribution without relying on reward models or partition functions. This allows the generalized loss to retain both simplicity and theoretical guarantees, which prior work such as $f$-PO fails to achieve simultaneously. We propose Bregman preference optimization (BPO), a generalized framework for ratio matching that provides a family of objective functions achieving target policy optimality. BPO subsumes DPO as a special case and offers tractable forms for all instances, allowing implementation with a few lines of code. We further develop scaled Basu's power divergence (SBA), a gradient scaling method that can be used for BPO instances. The BPO framework complements other DPO variants and is applicable to target policies defined by these variants. In experiments, unlike other probabilistic loss extensions such as $f$-DPO or $f$-PO, which exhibit a trade-off between generation fidelity and diversity, instances of BPO improve both win rate and entropy compared with DPO. When applied to Llama-3-Instruct-8B, BPO achieves state-of-the-art performance among Llama-3-8B backbones, with a 55.9\% length-controlled win rate on AlpacaEval2.
Related papers
- BNPO: Beta Normalization Policy Optimization [9.60676665395923]
We propose a novel policy optimization method that adaptively normalizes rewards using a Beta distribution with dynamically updated parameters.<n>We provide theoretical analysis demonstrating BNPO's variance-reducing properties and show that it generalizes both REINFORCE and GRPO under binary-valued reward settings.<n> Experimental results confirm that BNPO achieves state-of-the-art performance among policy optimization methods on reasoning tasks.
arXiv Detail & Related papers (2025-06-03T13:28:57Z) - Accelerating RL for LLM Reasoning with Optimal Advantage Regression [52.0792918455501]
We propose a novel two-stage policy optimization framework that directly approximates the optimal advantage function.<n>$A$*-PO achieves competitive performance across a wide range of mathematical reasoning benchmarks.<n>It reduces training time by up to 2$times$ and peak memory usage by over 30% compared to PPO, GRPO, and REBEL.
arXiv Detail & Related papers (2025-05-27T03:58:50Z) - Understanding the Performance Gap in Preference Learning: A Dichotomy of RLHF and DPO [51.22869332661607]
We decompose the performance gap between reinforcement learning from human feedback and direct preference optimization under a representation gap.<n>We show that RLHF, DPO, or online DPO can outperform one another depending on the type of model mis-specifications.
arXiv Detail & Related papers (2025-05-26T09:54:02Z) - Entropy Controllable Direct Preference Optimization [3.536605202672355]
We propose a simple modification to DPO, H-DPO, which allows for control over the entropy of the resulting policy.
In our experiments, we show that H-DPO outperformed DPO across various tasks, demonstrating superior results in pass@$k$ evaluations for mathematical tasks.
arXiv Detail & Related papers (2024-11-12T07:09:44Z) - $α$-DPO: Adaptive Reward Margin is What Direct Preference Optimization Needs [45.46582930202524]
$alpha$-DPO is an adaptive preference optimization algorithm for large language models.
It balances the policy model and the reference model to achieve personalized reward margins.
It consistently outperforms DPO and SimPO across various model settings.
arXiv Detail & Related papers (2024-10-14T04:29:57Z) - Provably Mitigating Overoptimization in RLHF: Your SFT Loss is Implicitly an Adversarial Regularizer [52.09480867526656]
We identify the source of misalignment as a form of distributional shift and uncertainty in learning human preferences.<n>To mitigate overoptimization, we first propose a theoretical algorithm that chooses the best policy for an adversarially chosen reward model.<n>Using the equivalence between reward models and the corresponding optimal policy, the algorithm features a simple objective that combines a preference optimization loss and a supervised learning loss.
arXiv Detail & Related papers (2024-05-26T05:38:50Z) - D2PO: Discriminator-Guided DPO with Response Evaluation Models [63.71853401569461]
We propose D2PO, discriminator-guided DPO, for the online setting where preferences are being collected throughout learning.
As we collect gold preferences, we use these not only to train our policy, but to train a discriminative response evaluation model to silver-label even more synthetic data for policy training.
We show conditions under which silver labeling is most helpful: it is most effective when training the policy with DPO, outperforming traditional PPO, and benefits from maintaining a separate discriminator from the policy model.
arXiv Detail & Related papers (2024-05-02T17:44:41Z) - Statistical Rejection Sampling Improves Preference Optimization [42.57245965632205]
We introduce a novel approach to source preference data from the target optimal policy using rejection sampling.
We also propose a unified framework that enhances the loss functions used in both Sequence Likelihood (SLiC) and Direct Preference Optimization (DPO) from a preference modeling standpoint.
arXiv Detail & Related papers (2023-09-13T01:07:25Z) - You May Not Need Ratio Clipping in PPO [117.03368180633463]
Proximal Policy Optimization (PPO) methods learn a policy by iteratively performing multiple mini-batch optimization epochs of a surrogate objective with one set of sampled data.
Ratio clipping PPO is a popular variant that clips the probability ratios between the target policy and the policy used to collect samples.
We show in this paper that such ratio clipping may not be a good option as it can fail to effectively bound the ratios.
We show that ESPO can be easily scaled up to distributed training with many workers, delivering strong performance as well.
arXiv Detail & Related papers (2022-01-31T20:26:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.