BNPO: Beta Normalization Policy Optimization
- URL: http://arxiv.org/abs/2506.02864v1
- Date: Tue, 03 Jun 2025 13:28:57 GMT
- Title: BNPO: Beta Normalization Policy Optimization
- Authors: Changyi Xiao, Mengdi Zhang, Yixin Cao,
- Abstract summary: We propose a novel policy optimization method that adaptively normalizes rewards using a Beta distribution with dynamically updated parameters.<n>We provide theoretical analysis demonstrating BNPO's variance-reducing properties and show that it generalizes both REINFORCE and GRPO under binary-valued reward settings.<n> Experimental results confirm that BNPO achieves state-of-the-art performance among policy optimization methods on reasoning tasks.
- Score: 9.60676665395923
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent studies, including DeepSeek-R1 and Kimi-k1.5, have demonstrated that reinforcement learning with rule-based, binary-valued reward functions can significantly enhance the reasoning capabilities of large language models. These models primarily utilize REINFORCE-based policy optimization techniques, such as REINFORCE with baseline and group relative policy optimization (GRPO). However, a key limitation remains: current policy optimization methods either neglect reward normalization or employ static normalization strategies, which fail to adapt to the dynamic nature of policy updates during training. This may result in unstable gradient estimates and hinder training stability. To address this issue, we propose Beta Normalization Policy Optimization (BNPO), a novel policy optimization method that adaptively normalizes rewards using a Beta distribution with dynamically updated parameters. BNPO aligns the normalization with the changing policy distribution, enabling more precise and lower-variance gradient estimation, which in turn promotes stable training dynamics. We provide theoretical analysis demonstrating BNPO's variance-reducing properties and show that it generalizes both REINFORCE and GRPO under binary-valued reward settings. Furthermore, we introduce an advantage decomposition mechanism to extend BNPO's applicability to more complex reward systems. Experimental results confirm that BNPO achieves state-of-the-art performance among policy optimization methods on reasoning tasks. The code is available at https://github.com/changyi7231/BNPO.
Related papers
- On the Theory and Practice of GRPO: A Trajectory-Corrected Approach with Fast Convergence [2.8165669455824696]
Group Relative Policy Optimization is a critic-free reinforcement learning algorithm.<n>We show that GRPO update rule estimates the policy gradient at the old policy rather than the current one.<n>We propose a new algorithm: Trajectory level Importance Corrected GRPO.
arXiv Detail & Related papers (2025-08-04T19:01:19Z) - Improving DAPO from a Mixed-Policy Perspective [0.0]
This paper introduces two novel modifications to the Dynamic sAmpling Policy Optimization (DAPO) algorithm.<n>We first propose a method that incorporates a pre-trained, stable guiding policy to provide off-policy experience.<n>We then extend this idea to re-utilize zero-reward samples, which are often discarded by dynamic sampling strategies.
arXiv Detail & Related papers (2025-07-17T09:12:09Z) - EXPO: Stable Reinforcement Learning with Expressive Policies [74.30151915786233]
We propose a sample-efficient online reinforcement learning algorithm to maximize value with two parameterized policies.<n>Our approach yields up to 2-3x improvement in sample efficiency on average over prior methods.
arXiv Detail & Related papers (2025-07-10T17:57:46Z) - On-Policy RL with Optimal Reward Baseline [109.47676554514193]
On-Policy RL with Optimal reward baseline (OPO) is a novel and simplified reinforcement learning algorithm.<n>OPO emphasizes the importance of exact on-policy training, which empirically stabilizes the training process and enhances exploration.<n>Results demonstrate OPO's superior performance and training stability without additional models or regularization terms.
arXiv Detail & Related papers (2025-05-29T15:58:04Z) - Beyond the Boundaries of Proximal Policy Optimization [17.577317574595206]
This work offers an alternative perspective of PPO, in which it is decomposed into the inner-loop estimation of update vectors.
We propose outer proximal policy optimization (outer-PPO); a framework wherein these update vectors are applied using an arbitrary gradient-based gradient.
Methods are evaluated against an aggressively tuned PPO baseline on Brax, Jumanji and MinAtar environments.
arXiv Detail & Related papers (2024-11-01T15:29:10Z) - $α$-DPO: Adaptive Reward Margin is What Direct Preference Optimization Needs [45.46582930202524]
$alpha$-DPO is an adaptive preference optimization algorithm for large language models.
It balances the policy model and the reference model to achieve personalized reward margins.
It consistently outperforms DPO and SimPO across various model settings.
arXiv Detail & Related papers (2024-10-14T04:29:57Z) - Provably Mitigating Overoptimization in RLHF: Your SFT Loss is Implicitly an Adversarial Regularizer [52.09480867526656]
We identify the source of misalignment as a form of distributional shift and uncertainty in learning human preferences.<n>To mitigate overoptimization, we first propose a theoretical algorithm that chooses the best policy for an adversarially chosen reward model.<n>Using the equivalence between reward models and the corresponding optimal policy, the algorithm features a simple objective that combines a preference optimization loss and a supervised learning loss.
arXiv Detail & Related papers (2024-05-26T05:38:50Z) - Policy Gradient with Active Importance Sampling [55.112959067035916]
Policy gradient (PG) methods significantly benefit from IS, enabling the effective reuse of previously collected samples.
However, IS is employed in RL as a passive tool for re-weighting historical samples.
We look for the best behavioral policy from which to collect samples to reduce the policy gradient variance.
arXiv Detail & Related papers (2024-05-09T09:08:09Z) - A dynamical clipping approach with task feedback for Proximal Policy Optimization [29.855219523565786]
There is no theoretical proof that the optimal PPO clipping bound remains consistent throughout the entire training process.
Past studies have aimed to dynamically adjust PPO clipping bound to enhance PPO's performance.
We propose Preference based Proximal Policy Optimization (Pb-PPO) to better reflect the preference (maximizing Return) of reinforcement learning tasks.
arXiv Detail & Related papers (2023-12-12T06:35:56Z) - Clipped-Objective Policy Gradients for Pessimistic Policy Optimization [3.2996723916635275]
Policy gradient methods seek to produce monotonic improvement through bounded changes in policy outputs.
In this work, we find that the performance of PPO, when applied to continuous action spaces, may be consistently improved through a simple change in objective.
We show that the clipped-objective policy gradient (COPG) objective is on average "pessimistic" compared to both the PPO objective and (2) this pessimism promotes enhanced exploration.
arXiv Detail & Related papers (2023-11-10T03:02:49Z) - The Role of Baselines in Policy Gradient Optimization [83.42050606055822]
We show that the emphstate value baseline allows on-policy.
emphnatural policy gradient (NPG) to converge to a globally optimal.
policy at an $O (1/t) rate gradient.
We find that the primary effect of the value baseline is to textbfreduce the aggressiveness of the updates rather than their variance.
arXiv Detail & Related papers (2023-01-16T06:28:00Z) - Hinge Policy Optimization: Rethinking Policy Improvement and
Reinterpreting PPO [6.33198867705718]
Policy optimization is a fundamental principle for designing reinforcement learning algorithms.
Despite its superior empirical performance, PPO-clip has not been justified via theoretical proof up to date.
This is the first ever that can prove global convergence to an optimal policy for a variant of PPO-clip.
arXiv Detail & Related papers (2021-10-26T15:56:57Z) - Iterative Amortized Policy Optimization [147.63129234446197]
Policy networks are a central feature of deep reinforcement learning (RL) algorithms for continuous control.
From the variational inference perspective, policy networks are a form of textitamortized optimization, optimizing network parameters rather than the policy distributions directly.
We demonstrate that iterative amortized policy optimization, yields performance improvements over direct amortization on benchmark continuous control tasks.
arXiv Detail & Related papers (2020-10-20T23:25:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.