Select, Read, and Write: A Multi-Agent Framework of Full-Text-based Related Work Generation
- URL: http://arxiv.org/abs/2505.19647v1
- Date: Mon, 26 May 2025 08:02:34 GMT
- Title: Select, Read, and Write: A Multi-Agent Framework of Full-Text-based Related Work Generation
- Authors: Xiaochuan Liu, Ruihua Song, Xiting Wang, Xu Chen,
- Abstract summary: We focus on full-text-based RWG task and propose a novel multi-agent framework.<n>Our framework consists of three agents: a selector that decides which section of the papers is going to read next, a reader that digests the selected section and updates a shared working memory, and a writer that generates RWS based on the final curated memory.
- Score: 30.269522560606138
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automatic related work generation (RWG) can save people's time and effort when writing a draft of related work section (RWS) for further revision. However, existing methods for RWG always suffer from shallow comprehension due to taking the limited portions of references papers as input and isolated explanation for each reference due to ineffective capturing the relationships among them. To address these issues, we focus on full-text-based RWG task and propose a novel multi-agent framework. Our framework consists of three agents: a selector that decides which section of the papers is going to read next, a reader that digests the selected section and updates a shared working memory, and a writer that generates RWS based on the final curated memory. To better capture the relationships among references, we also propose two graph-aware strategies for selector, enabling to optimize the reading order with constrains of the graph structure. Extensive experiments demonstrate that our framework consistently improves performance across three base models and various input configurations. The graph-aware selectors outperform alternative selectors, achieving state-of-the-art results. The code and data are available at https://github.com/1190200817/Full_Text_RWG.
Related papers
- Visual Document Understanding and Question Answering: A Multi-Agent Collaboration Framework with Test-Time Scaling [83.78874399606379]
We propose MACT, a Multi-Agent Collaboration framework with Test-Time scaling.<n>It comprises four distinct small-scale agents, with clearly defined roles and effective collaboration.<n>It shows superior performance with a smaller parameter scale without sacrificing the ability of general and mathematical tasks.
arXiv Detail & Related papers (2025-08-05T12:52:09Z) - Hierarchical Lexical Graph for Enhanced Multi-Hop Retrieval [22.33550491040999]
RAG grounds large language models in external evidence, yet it still falters when answers must be pieced together across semantically distant documents.<n>We build two plug-and-play retrievers: StatementGraphRAG and TopicGraphRAG.<n>Our methods outperform naive chunk-based RAG achieving an average relative improvement of 23.1% in retrieval recall and correctness.
arXiv Detail & Related papers (2025-06-09T17:58:35Z) - LLM-Ref: Enhancing Reference Handling in Technical Writing with Large Language Models [4.1180254968265055]
We present LLM-Ref, a writing assistant tool that aids researchers in writing articles from multiple source documents.
Unlike traditional RAG systems that use chunking and indexing, our tool retrieves and generates content directly from text paragraphs.
Our approach achieves a $3.25times$ to $6.26times$ increase in Ragas score, a comprehensive metric that provides a holistic view of a RAG system's ability to produce accurate, relevant, and contextually appropriate responses.
arXiv Detail & Related papers (2024-11-01T01:11:58Z) - Graph of Records: Boosting Retrieval Augmented Generation for Long-context Summarization with Graphs [12.878608250420832]
We propose textitgraph of records (textbfGoR) to enhance RAG for long-context global summarization.
Inspired by the textitretrieve-then-generate paradigm of RAG, we construct a graph by establishing an edge between the retrieved text chunks and the corresponding LLM-generated response.
To further uncover the intricate correlations between them, GoR features a textitgraph neural network and an elaborately designed textitBERTScore-based objective for self-supervised model training.
arXiv Detail & Related papers (2024-10-14T18:34:29Z) - GraphReader: Building Graph-based Agent to Enhance Long-Context Abilities of Large Language Models [58.08177466768262]
Long-context capabilities are essential for large language models (LLMs) to tackle complex and long-input tasks.
We introduce GraphReader, a graph-based agent system designed to handle long texts by structuring them into a graph and employing an agent to explore this graph autonomously.
Experimental results on the LV-Eval dataset reveal that GraphReader, using a 4k context window, consistently outperforms GPT-4-128k across context lengths from 16k to 256k by a large margin.
arXiv Detail & Related papers (2024-06-20T17:57:51Z) - Accelerating Inference of Retrieval-Augmented Generation via Sparse Context Selection [28.15184715270483]
Large language models (LLMs) augmented with retrieval exhibit robust performance and extensive versatility.
We propose a novel paradigm named Sparse RAG, which seeks to cut costs through sparsity.
Sparse RAG encodes retrieved documents in parallel, which eliminates latency introduced by long-range attention of retrieved documents.
arXiv Detail & Related papers (2024-05-25T11:10:04Z) - ReSel: N-ary Relation Extraction from Scientific Text and Tables by
Learning to Retrieve and Select [53.071352033539526]
We study the problem of extracting N-ary relations from scientific articles.
Our proposed method ReSel decomposes this task into a two-stage procedure.
Our experiments on three scientific information extraction datasets show that ReSel outperforms state-of-the-art baselines significantly.
arXiv Detail & Related papers (2022-10-26T02:28:02Z) - Generate rather than Retrieve: Large Language Models are Strong Context
Generators [74.87021992611672]
We present a novel perspective for solving knowledge-intensive tasks by replacing document retrievers with large language model generators.
We call our method generate-then-read (GenRead), which first prompts a large language model to generate contextutal documents based on a given question, and then reads the generated documents to produce the final answer.
arXiv Detail & Related papers (2022-09-21T01:30:59Z) - Autoregressive Search Engines: Generating Substrings as Document
Identifiers [53.0729058170278]
Autoregressive language models are emerging as the de-facto standard for generating answers.
Previous work has explored ways to partition the search space into hierarchical structures.
In this work we propose an alternative that doesn't force any structure in the search space: using all ngrams in a passage as its possible identifiers.
arXiv Detail & Related papers (2022-04-22T10:45:01Z) - Unsupervised Matching of Data and Text [6.2520079463149205]
We introduce a framework that supports matching textual content and structured data in an unsupervised setting.
Our method builds a fine-grained graph over the content of the corpora and derives word embeddings to represent the objects to match in a low dimensional space.
Experiments on real use cases and public datasets show that our framework produces embeddings that outperform word embeddings and fine-tuned language models.
arXiv Detail & Related papers (2021-12-16T10:40:48Z) - Structured Multimodal Attentions for TextVQA [57.71060302874151]
We propose an end-to-end structured multimodal attention (SMA) neural network to mainly solve the first two issues above.
SMA first uses a structural graph representation to encode the object-object, object-text and text-text relationships appearing in the image, and then designs a multimodal graph attention network to reason over it.
Our proposed model outperforms the SoTA models on TextVQA dataset and two tasks of ST-VQA dataset among all models except pre-training based TAP.
arXiv Detail & Related papers (2020-06-01T07:07:36Z) - Graph Convolution Machine for Context-aware Recommender System [59.50474932860843]
We extend the advantages of graph convolutions to context-aware recommender system (CARS)
We propose textitGraph Convolution Machine (GCM), an end-to-end framework that consists of three components: an encoder, graph convolution layers, and a decoder.
We conduct experiments on three real-world datasets from Yelp and Amazon, validating the effectiveness of GCM and the benefits of performing graph convolutions for CARS.
arXiv Detail & Related papers (2020-01-30T15:32:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.