Improving Heart Rejection Detection in XPCI Images Using Synthetic Data Augmentation
- URL: http://arxiv.org/abs/2505.19746v1
- Date: Mon, 26 May 2025 09:26:36 GMT
- Title: Improving Heart Rejection Detection in XPCI Images Using Synthetic Data Augmentation
- Authors: Jakov Samardžija, Donik Vršnak, Sven Lončarić,
- Abstract summary: StyleGAN was trained on available 3R biopsy patches and subsequently used to generate 10,000 realistic synthetic images.<n>These were combined with real 0R samples, that is samples without rejection, in various configurations to train ResNet-18 classifiers for binary rejection classification.<n>Results demonstrate that synthetic data improves classification performance, particularly when used in combination with real samples.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Accurate identification of acute cellular rejection (ACR) in endomyocardial biopsies is essential for effective management of heart transplant patients. However, the rarity of high-grade rejection cases (3R) presents a significant challenge for training robust deep learning models. This work addresses the class imbalance problem by leveraging synthetic data generation using StyleGAN to augment the limited number of real 3R images. Prior to GAN training, histogram equalization was applied to standardize image appearance and improve the consistency of tissue representation. StyleGAN was trained on available 3R biopsy patches and subsequently used to generate 10,000 realistic synthetic images. These were combined with real 0R samples, that is samples without rejection, in various configurations to train ResNet-18 classifiers for binary rejection classification. Three classifier variants were evaluated: one trained on real 0R and synthetic 3R images, another using both synthetic and additional real samples, and a third trained solely on real data. All models were tested on an independent set of real biopsy images. Results demonstrate that synthetic data improves classification performance, particularly when used in combination with real samples. The highest-performing model, which used both real and synthetic images, achieved strong precision and recall for both classes. These findings underscore the value of hybrid training strategies and highlight the potential of GAN-based data augmentation in biomedical image analysis, especially in domains constrained by limited annotated datasets.
Related papers
- AI-Driven Cytomorphology Image Synthesis for Medical Diagnostics [3.462981934061808]
In this work, we focus on the classification of single white blood cells, a key component in the diagnosis of hematological diseases such as acute myeloid leukemia (AML)<n>We demonstrate how synthetic images generated with a fine-tuned stable diffusion model can enhance classifier performance for limited data.<n>Our results establish synthetic images as a tool in biomedical research, improving machine learning models, and facilitating medical diagnosis and research.
arXiv Detail & Related papers (2025-07-07T14:49:05Z) - Federated Breast Cancer Detection Enhanced by Synthetic Ultrasound Image Augmentation [3.586778724545972]
Federated learning (FL) has emerged as a promising paradigm for collaboratively training deep learning models across institutions without exchanging sensitive medical data.<n>We propose a generative AI based data augmentation framework that integrates synthetic image sharing into the federated training process for breast cancer diagnosis via ultrasound images.
arXiv Detail & Related papers (2025-06-29T17:05:50Z) - Merging synthetic and real embryo data for advanced AI predictions [69.07284335967019]
We train two generative models using two datasets-one we created and made publicly available, and one existing public dataset-to generate synthetic embryo images at various cell stages.<n>These were combined with real images to train classification models for embryo cell stage prediction.<n>Our results demonstrate that incorporating synthetic images alongside real data improved classification performance, with the model achieving 97% accuracy compared to 94.5% when trained solely on real data.
arXiv Detail & Related papers (2024-12-02T08:24:49Z) - Unleashing the Potential of Synthetic Images: A Study on Histopathology Image Classification [0.12499537119440242]
Histopathology image classification is crucial for the accurate identification and diagnosis of various diseases.
We show that synthetic images can effectively augment existing datasets, ultimately improving the performance of the downstream histopathology image classification task.
arXiv Detail & Related papers (2024-09-24T12:02:55Z) - Non-Reference Quality Assessment for Medical Imaging: Application to Synthetic Brain MRIs [0.0]
This study introduces a novel deep learning-based non-reference approach to assess brain MRI quality by training a 3D ResNet.
The network is designed to estimate quality across six distinct artifacts commonly encountered in MRI scans.
Results demonstrate superior performance in accurately estimating distortions and reflecting image quality from multiple perspectives.
arXiv Detail & Related papers (2024-07-20T22:05:30Z) - Realistic Surgical Image Dataset Generation Based On 3D Gaussian Splatting [3.5351922399745166]
This research introduces a novel method that employs 3D Gaussian Splatting to generate synthetic surgical datasets.
We developed a data recording system capable of acquiring images alongside tool and camera poses in a surgical scene.
Using this pose data, we synthetically replicate the scene, thereby enabling direct comparisons of the synthetic image quality.
arXiv Detail & Related papers (2024-07-20T11:20:07Z) - Is Synthetic Image Useful for Transfer Learning? An Investigation into Data Generation, Volume, and Utilization [62.157627519792946]
We introduce a novel framework called bridged transfer, which initially employs synthetic images for fine-tuning a pre-trained model to improve its transferability.
We propose dataset style inversion strategy to improve the stylistic alignment between synthetic and real images.
Our proposed methods are evaluated across 10 different datasets and 5 distinct models, demonstrating consistent improvements.
arXiv Detail & Related papers (2024-03-28T22:25:05Z) - UAV-Sim: NeRF-based Synthetic Data Generation for UAV-based Perception [62.71374902455154]
We leverage recent advancements in neural rendering to improve static and dynamic novelview UAV-based image rendering.
We demonstrate a considerable performance boost when a state-of-the-art detection model is optimized primarily on hybrid sets of real and synthetic data.
arXiv Detail & Related papers (2023-10-25T00:20:37Z) - Brain tumor segmentation using synthetic MR images -- A comparison of
GANs and diffusion models [0.0]
Generative AI models, such as generative adversarial networks (GANs) and diffusion models, can today produce very realistic synthetic images.
We show that segmentation networks trained on synthetic images reach Dice scores that are 80% - 90% of Dice scores when training with real images.
Our conclusion is that sharing synthetic medical images is a viable option to sharing real images, but that further work is required.
arXiv Detail & Related papers (2023-06-05T15:56:30Z) - Significantly improving zero-shot X-ray pathology classification via fine-tuning pre-trained image-text encoders [50.689585476660554]
We propose a new fine-tuning strategy that includes positive-pair loss relaxation and random sentence sampling.
Our approach consistently improves overall zero-shot pathology classification across four chest X-ray datasets and three pre-trained models.
arXiv Detail & Related papers (2022-12-14T06:04:18Z) - OADAT: Experimental and Synthetic Clinical Optoacoustic Data for
Standardized Image Processing [62.993663757843464]
Optoacoustic (OA) imaging is based on excitation of biological tissues with nanosecond-duration laser pulses followed by detection of ultrasound waves generated via light-absorption-mediated thermoelastic expansion.
OA imaging features a powerful combination between rich optical contrast and high resolution in deep tissues.
No standardized datasets generated with different types of experimental set-up and associated processing methods are available to facilitate advances in broader applications of OA in clinical settings.
arXiv Detail & Related papers (2022-06-17T08:11:26Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
We present a new type of discriminator, the segmentor, to accurately locate the lesions and improve the visual quality of pseudo-healthy images.
We apply the generated images into medical image enhancement and utilize the enhanced results to cope with the low contrast problem.
Comprehensive experiments on the T2 modality of BraTS demonstrate that the proposed method substantially outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2022-03-29T08:41:17Z) - Synthetic Data and Hierarchical Object Detection in Overhead Imagery [0.0]
We develop novel synthetic data generation and augmentation techniques for enhancing low/zero-sample learning in satellite imagery.
To test the effectiveness of synthetic imagery, we employ it in the training of detection models and our two stage model, and evaluate the resulting models on real satellite images.
arXiv Detail & Related papers (2021-01-29T22:52:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.