EGA-V1: Unifying Online Advertising with End-to-End Learning
- URL: http://arxiv.org/abs/2505.19755v2
- Date: Mon, 02 Jun 2025 13:46:57 GMT
- Title: EGA-V1: Unifying Online Advertising with End-to-End Learning
- Authors: Junyan Qiu, Ze Wang, Fan Zhang, Zuowu Zheng, Jile Zhu, Jiangke Fan, Teng Zhang, Haitao Wang, Yongkang Wang, Xingxing Wang,
- Abstract summary: We present EGA-V1, an end-to-end generative architecture that unifies online advertising ranking as one model.<n>EGA-V1 replaces cascaded stages with a single model to directly generate optimal ad sequences from the full candidate ad corpus.
- Score: 17.943921299281207
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern industrial advertising systems commonly employ Multi-stage Cascading Architectures (MCA) to balance computational efficiency with ranking accuracy. However, this approach presents two fundamental challenges: (1) performance inconsistencies arising from divergent optimization targets and capability differences between stages, and (2) failure to account for advertisement externalities - the complex interactions between candidate ads during ranking. These limitations ultimately compromise system effectiveness and reduce platform profitability. In this paper, we present EGA-V1, an end-to-end generative architecture that unifies online advertising ranking as one model. EGA-V1 replaces cascaded stages with a single model to directly generate optimal ad sequences from the full candidate ad corpus in location-based services (LBS). The primary challenges associated with this approach stem from high costs of feature processing and computational bottlenecks in modeling externalities of large-scale candidate pools. To address these challenges, EGA-V1 introduces an algorithm and engine co-designed hybrid feature service to decouple user and ad feature processing, reducing latency while preserving expressiveness. To efficiently extract intra- and cross-sequence mutual information, we propose RecFormer with an innovative cluster-attention mechanism as its core architectural component. Furthermore, we propose a bi-stage training strategy that integrates pre-training with reinforcement learning-based post-training to meet sophisticated platform and advertising objectives. Extensive offline evaluations on public benchmarks and large-scale online A/B testing on industrial advertising platform have demonstrated the superior performance of EGA-V1 over state-of-the-art MCAs.
Related papers
- Beyond Cascaded Architectures: An End-to-end Generative Framework for Industrial Advertising [20.10161044083558]
We introduce End-to-End Generative Advertising (EGA), the first unified framework that holistically models user interests, point-of-interest (POI) and creative generation, ad allocation, and payment optimization.<n>Our results highlight its potential as a pioneering fully generative advertising solution, paving the way for next-generation industrial ad systems.
arXiv Detail & Related papers (2025-05-23T06:55:02Z) - SOLVE: Synergy of Language-Vision and End-to-End Networks for Autonomous Driving [51.47621083057114]
SOLVE is an innovative framework that synergizes Vision-Language Models with end-to-end (E2E) models to enhance autonomous vehicle planning.<n>Our approach emphasizes knowledge sharing at the feature level through a shared visual encoder, enabling comprehensive interaction between VLM and E2E components.
arXiv Detail & Related papers (2025-05-22T15:44:30Z) - LONGER: Scaling Up Long Sequence Modeling in Industrial Recommenders [23.70714095931094]
Long-sequence optimized traNsformer for GPU-Efficient Recommenders.<n>Longer consistently outperforms strong baselines in offline metrics and online A/B testing.
arXiv Detail & Related papers (2025-05-07T13:54:26Z) - Read-ME: Refactorizing LLMs as Router-Decoupled Mixture of Experts with System Co-Design [59.00758127310582]
We propose a novel framework Read-ME that transforms pre-trained dense LLMs into smaller MoE models.
Our approach employs activation sparsity to extract experts.
Read-ME outperforms other popular open-source dense models of similar scales.
arXiv Detail & Related papers (2024-10-24T19:48:51Z) - Neural Optimization with Adaptive Heuristics for Intelligent Marketing System [1.3079444139643954]
We propose a general framework for marketing AI systems, the Neural Optimization with Adaptive Heuristics (Noah) framework.
Noah is the first general framework for marketing optimization that considers both to-business (2B) and to-consumer (2C) products, as well as both owned and paid channels.
We describe key modules of the Noah framework, including prediction, optimization, and adaptive audiences, providing examples for bidding and content optimization.
arXiv Detail & Related papers (2024-05-17T01:44:30Z) - Learning Fair Ranking Policies via Differentiable Optimization of
Ordered Weighted Averages [55.04219793298687]
This paper shows how efficiently-solvable fair ranking models can be integrated into the training loop of Learning to Rank.
In particular, this paper is the first to show how to backpropagate through constrained optimizations of OWA objectives, enabling their use in integrated prediction and decision models.
arXiv Detail & Related papers (2024-02-07T20:53:53Z) - Efficiency Pentathlon: A Standardized Arena for Efficiency Evaluation [82.85015548989223]
Pentathlon is a benchmark for holistic and realistic evaluation of model efficiency.
Pentathlon focuses on inference, which accounts for a majority of the compute in a model's lifecycle.
It incorporates a suite of metrics that target different aspects of efficiency, including latency, throughput, memory overhead, and energy consumption.
arXiv Detail & Related papers (2023-07-19T01:05:33Z) - COPR: Consistency-Oriented Pre-Ranking for Online Advertising [27.28920707332434]
We introduce a consistency-oriented pre-ranking framework for online advertising.
It employs a chunk-based sampling module and a plug-and-play rank alignment module to explicitly optimize consistency of ECPM-ranked results.
When deployed in Taobao display advertising system, it achieves an improvement of up to +12.3% CTR and +5.6% RPM.
arXiv Detail & Related papers (2023-06-06T09:08:40Z) - Vertical Semi-Federated Learning for Efficient Online Advertising [50.18284051956359]
Semi-VFL (Vertical Semi-Federated Learning) is proposed to achieve a practical industry application fashion for VFL.
We build an inference-efficient single-party student model applicable to the whole sample space.
New representation distillation methods are designed to extract cross-party feature correlations for both the overlapped and non-overlapped data.
arXiv Detail & Related papers (2022-09-30T17:59:27Z) - VFed-SSD: Towards Practical Vertical Federated Advertising [53.08038962443853]
We propose a semi-supervised split distillation framework VFed-SSD to alleviate the two limitations.
Specifically, we develop a self-supervised task MatchedPair Detection (MPD) to exploit the vertically partitioned unlabeled data.
Our framework provides an efficient federation-enhanced solution for real-time display advertising with minimal deploying cost and significant performance lift.
arXiv Detail & Related papers (2022-05-31T17:45:30Z) - DANCE: DAta-Network Co-optimization for Efficient Segmentation Model Training and Inference [86.03382625531951]
DANCE is an automated simultaneous data-network co-optimization for efficient segmentation model training and inference.<n>It integrates automated data slimming which adaptively downsamples/drops input images and controls their corresponding contribution to the training loss guided by the images' spatial complexity.<n>Experiments and ablating studies demonstrate that DANCE can achieve "all-win" towards efficient segmentation.
arXiv Detail & Related papers (2021-07-16T04:58:58Z) - A Cooperative-Competitive Multi-Agent Framework for Auto-bidding in
Online Advertising [53.636153252400945]
We propose a general Multi-Agent reinforcement learning framework for Auto-Bidding, namely MAAB, to learn the auto-bidding strategies.
Our approach outperforms several baseline methods in terms of social welfare and guarantees the ad platform's revenue.
arXiv Detail & Related papers (2021-06-11T08:07:14Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
Mobile edge computing (MEC) provides a natural platform for AI applications.
We present an infrastructure to perform machine learning tasks at an MEC with the assistance of a reconfigurable intelligent surface (RIS)
Specifically, we minimize the learning error of all participating users by jointly optimizing transmit power of mobile users, beamforming vectors of the base station, and the phase-shift matrix of the RIS.
arXiv Detail & Related papers (2020-12-25T07:08:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.