PCDCNet: A Surrogate Model for Air Quality Forecasting with Physical-Chemical Dynamics and Constraints
- URL: http://arxiv.org/abs/2505.19842v2
- Date: Tue, 27 May 2025 04:55:19 GMT
- Title: PCDCNet: A Surrogate Model for Air Quality Forecasting with Physical-Chemical Dynamics and Constraints
- Authors: Shuo Wang, Yun Cheng, Qingye Meng, Olga Saukh, Jiang Zhang, Jingfang Fan, Yuanting Zhang, Xingyuan Yuan, Lothar Thiele,
- Abstract summary: PCDCNet is a surrogate model that integrates numerical modeling principles with deep learning.<n>It achieves state-of-the-art (SOTA) performance in 72-hour station-level PM2.5 and O3 forecasting.<n>Our model is deployed in an online platform, providing free, real-time air quality forecasts.
- Score: 18.122247904707837
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Air quality forecasting (AQF) is critical for public health and environmental management, yet remains challenging due to the complex interplay of emissions, meteorology, and chemical transformations. Traditional numerical models, such as CMAQ and WRF-Chem, provide physically grounded simulations but are computationally expensive and rely on uncertain emission inventories. Deep learning models, while computationally efficient, often struggle with generalization due to their lack of physical constraints. To bridge this gap, we propose PCDCNet, a surrogate model that integrates numerical modeling principles with deep learning. PCDCNet explicitly incorporates emissions, meteorological influences, and domain-informed constraints to model pollutant formation, transport, and dissipation. By combining graph-based spatial transport modeling, recurrent structures for temporal accumulation, and representation enhancement for local interactions, PCDCNet achieves state-of-the-art (SOTA) performance in 72-hour station-level PM2.5 and O3 forecasting while significantly reducing computational costs. Furthermore, our model is deployed in an online platform, providing free, real-time air quality forecasts, demonstrating its scalability and societal impact. By aligning deep learning with physical consistency, PCDCNet offers a practical and interpretable solution for AQF, enabling informed decision-making for both personal and regulatory applications.
Related papers
- Predicting Large-scale Urban Network Dynamics with Energy-informed Graph Neural Diffusion [51.198001060683296]
Networked urban systems facilitate the flow of people, resources, and services.<n>Current models such as graph neural networks have shown promise but face a trade-off between efficacy and efficiency.<n>This paper addresses this trade-off by drawing inspiration from physical laws to inform essential model designs.
arXiv Detail & Related papers (2025-07-31T01:24:01Z) - Lightweight Task-Oriented Semantic Communication Empowered by Large-Scale AI Models [66.57755931421285]
Large-scale artificial intelligence (LAI) models pose significant challenges for real-time communication scenarios.<n>This paper proposes utilizing knowledge distillation (KD) techniques to extract and condense knowledge from LAI models.<n>We propose a fast distillation method featuring a pre-stored compression mechanism that eliminates the need for repetitive inference.
arXiv Detail & Related papers (2025-06-16T08:42:16Z) - Flow Matching Meets PDEs: A Unified Framework for Physics-Constrained Generation [21.321570407292263]
We propose Physics-Based Flow Matching, a generative framework that embeds physical constraints, both PDE residuals and algebraic relations, into the flow matching objective.<n>We show that our approach yields up to an $8times$ more accurate physical residuals compared to FM, while clearly outperforming existing algorithms in terms of distributional accuracy.
arXiv Detail & Related papers (2025-06-10T09:13:37Z) - FuXi-Air: Urban Air Quality Forecasting Based on Emission-Meteorology-Pollutant multimodal Machine Learning [22.270124698874934]
An air quality forecasting model, named FuXi-Air, has been constructed based on multimodal data fusion to support high-precision air quality forecasting.<n>The model successfully completes 72-hour forecasts for six major air pollutants at an hourly resolution across multiple monitoring sites within 25-30 seconds.
arXiv Detail & Related papers (2025-06-09T10:27:50Z) - Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
We focus on limited-area modeling and train our model specifically for localized region-level downstream tasks.
We consider the MENA region due to its unique climatic challenges, where accurate localized weather forecasting is crucial for managing water resources, agriculture and mitigating the impacts of extreme weather events.
Our study aims to validate the effectiveness of integrating parameter-efficient fine-tuning (PEFT) methodologies, specifically Low-Rank Adaptation (LoRA) and its variants, to enhance forecast accuracy, as well as training speed, computational resource utilization, and memory efficiency in weather and climate modeling for specific regions.
arXiv Detail & Related papers (2024-09-11T19:31:56Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - A Scalable Real-Time Data Assimilation Framework for Predicting Turbulent Atmosphere Dynamics [8.012940782999975]
We introduce a generic real-time data assimilation framework and demonstrate its end-to-end performance on the Frontier supercomputer.
This framework comprises two primary modules: an ensemble score filter (EnSF) and a vision transformer-based surrogate.
We demonstrate both the strong and weak scaling of our framework up to 1024 GPUs on the Exascale supercomputer, Frontier.
arXiv Detail & Related papers (2024-07-16T20:44:09Z) - Physics-Informed Machine Learning Towards A Real-Time Spacecraft Thermal Simulator [15.313871831214902]
The PIML model or hybrid model presented here consists of a neural network which predicts reduced nodalizations given on-orbit thermal load conditions.
We compare the computational performance and accuracy of the hybrid model to a data-driven neural net model, and a high-fidelity finite-difference model of a prototype Earth-orbiting small spacecraft.
The PIML based active nodalization approach provides significantly better generalization than the neural net model and coarse mesh model, while reducing computing cost by up to 1.7x compared to the high-fidelity model.
arXiv Detail & Related papers (2024-07-08T16:38:52Z) - Fast, Scale-Adaptive, and Uncertainty-Aware Downscaling of Earth System Model Fields with Generative Machine Learning [0.0]
High-resolution Earth system model (ESM) simulations are essential to assess the ecological and socio-economic impacts of anthropogenic climate change.<n>Recent machine learning approaches have shown promising results in downscaling ESM simulations, outperforming state-of-the-art statistical approaches.<n>We address these shortcomings by learning a consistency model (CM) that efficiently and accurately downscales arbitrary ESM simulations without retraining in a zero-shot manner.
arXiv Detail & Related papers (2024-03-05T08:41:41Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaX is a deep learning model for weather and climate science.
It can be pre-trained with a self-supervised learning objective on climate datasets.
It can be fine-tuned to address a breadth of climate and weather tasks.
arXiv Detail & Related papers (2023-01-24T23:19:01Z) - Multi-scale Digital Twin: Developing a fast and physics-informed
surrogate model for groundwater contamination with uncertain climate models [53.44486283038738]
Climate change exacerbates the long-term soil management problem of groundwater contamination.
We develop a physics-informed machine learning surrogate model using U-Net enhanced Fourier Neural Contaminated (PDENO)
In parallel, we develop a convolutional autoencoder combined with climate data to reduce the dimensionality of climatic region similarities across the United States.
arXiv Detail & Related papers (2022-11-20T06:46:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.