ESLM: Risk-Averse Selective Language Modeling for Efficient Pretraining
- URL: http://arxiv.org/abs/2505.19893v1
- Date: Mon, 26 May 2025 12:23:26 GMT
- Title: ESLM: Risk-Averse Selective Language Modeling for Efficient Pretraining
- Authors: Melis Ilayda Bal, Volkan Cevher, Michael Muehlebach,
- Abstract summary: Large language model pretraining is compute-intensive, yet many tokens contribute marginally to learning, resulting in inefficiency.<n>We introduce Selective Efficient Language Modeling, a risk-aware algorithm that improves training efficiency and distributional robustness by performing online token-level batch selection.<n> Experiments on GPT-2 pretraining show that ESLM significantly reduces training FLOPs while maintaining or improving both perplexity and downstream performance compared to baselines.
- Score: 53.893792844055106
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language model pretraining is compute-intensive, yet many tokens contribute marginally to learning, resulting in inefficiency. We introduce Efficient Selective Language Modeling (ESLM), a risk-aware algorithm that improves training efficiency and distributional robustness by performing online token-level batch selection. ESLM leverages per-token statistics (e.g., entropy or loss) and applies value-at-risk thresholding to retain only the most informative tokens per batch. This data-centric mechanism reshapes the training loss, prioritizing high-risk tokens and eliminating redundant gradient computation. We frame ESLM as a bilevel game: the model competes with a masking adversary that selects worst-case token subsets under a constrained thresholding rule. In the loss-based setting, ESLM recovers conditional value-at-risk loss minimization, providing a principled connection to distributionally robust optimization. We extend our approach to Ada-ESLM, which adaptively tunes the selection confidence during training. Experiments on GPT-2 pretraining show that ESLM significantly reduces training FLOPs while maintaining or improving both perplexity and downstream performance compared to baselines. Our approach also scales across model sizes, pretraining corpora, and integrates naturally with knowledge distillation.
Related papers
- LLM Unlearning Reveals a Stronger-Than-Expected Coreset Effect in Current Benchmarks [23.5632914682956]
Large language model unlearning has become a critical challenge in ensuring safety and controlled model behavior.<n>We show that LLM unlearning can be effectively maintained using a significantly smaller subset (functioning as a "coreset")<n>This suggests that LLM unlearning in these benchmarks can be performed surprisingly easily, even in an extremely low-data regime.
arXiv Detail & Related papers (2025-04-14T12:38:37Z) - S$^2$R: Teaching LLMs to Self-verify and Self-correct via Reinforcement Learning [51.84977135926156]
We introduce S$2$R, an efficient framework that enhances LLM reasoning by teaching models to self-verify and self-correct during inference.<n>Our results demonstrate that Qwen2.5-math-7B achieves an accuracy improvement from 51.0% to 81.6%, outperforming models trained on an equivalent amount of long-CoT distilled data.
arXiv Detail & Related papers (2025-02-18T13:40:22Z) - Context-aware Prompt Tuning: Advancing In-Context Learning with Adversarial Methods [69.36397993451742]
This work introduces Context-aware Prompt Tuning (CPT), a method inspired by ICL, PT, and adversarial attacks.
We modify specific context tokens, considering the unique structure of input and output formats.
Inspired by adversarial attacks, we adjust the input based on the labels present in the context, focusing on minimizing, rather than maximizing, the loss.
arXiv Detail & Related papers (2024-10-22T17:45:47Z) - Accelerating Large Language Model Pretraining via LFR Pedagogy: Learn, Focus, and Review [50.78587571704713]
Learn-Focus-Review (LFR) is a dynamic training approach that adapts to the model's learning progress.<n>LFR tracks the model's learning performance across data blocks (sequences of tokens) and prioritizes revisiting challenging regions of the dataset.<n>Compared to baseline models trained on the full datasets, LFR consistently achieved lower perplexity and higher accuracy.
arXiv Detail & Related papers (2024-09-10T00:59:18Z) - Towards Robust and Parameter-Efficient Knowledge Unlearning for LLMs [25.91643745340183]
Large Language Models (LLMs) have demonstrated strong reasoning and memorization capabilities via pretraining on massive textual corpora.<n>This poses risk of privacy and copyright violations, highlighting the need for efficient machine unlearning methods.<n>We propose Low-rank Knowledge Unlearning (LoKU), a novel framework that enables robust and efficient unlearning for LLMs.
arXiv Detail & Related papers (2024-08-13T04:18:32Z) - Efficient Adversarial Training in LLMs with Continuous Attacks [99.5882845458567]
Large language models (LLMs) are vulnerable to adversarial attacks that can bypass their safety guardrails.
We propose a fast adversarial training algorithm (C-AdvUL) composed of two losses.
C-AdvIPO is an adversarial variant of IPO that does not require utility data for adversarially robust alignment.
arXiv Detail & Related papers (2024-05-24T14:20:09Z) - Uncertainty-aware Parameter-Efficient Self-training for Semi-supervised
Language Understanding [38.11411155621616]
We study self-training as one of the predominant semi-supervised learning approaches.
We present UPET, a novel Uncertainty-aware self-Training framework.
We show that UPET achieves a substantial improvement in terms of performance and efficiency.
arXiv Detail & Related papers (2023-10-19T02:18:29Z) - MC-BERT: Efficient Language Pre-Training via a Meta Controller [96.68140474547602]
Large-scale pre-training is computationally expensive.
ELECTRA, an early attempt to accelerate pre-training, trains a discriminative model that predicts whether each input token was replaced by a generator.
We propose a novel meta-learning framework, MC-BERT, to achieve better efficiency and effectiveness.
arXiv Detail & Related papers (2020-06-10T09:22:19Z) - Self-Adaptive Training: beyond Empirical Risk Minimization [15.59721834388181]
We propose a new training algorithm that dynamically corrects problematic labels by model predictions without incurring extra computational cost.
Self-adaptive training significantly improves generalization over various levels of noises, and mitigates the overfitting issue in both natural and adversarial training.
Experiments on CIFAR and ImageNet datasets verify the effectiveness of our approach in two applications.
arXiv Detail & Related papers (2020-02-24T15:47:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.