An Explainable Diagnostic Framework for Neurodegenerative Dementias via Reinforcement-Optimized LLM Reasoning
- URL: http://arxiv.org/abs/2505.19954v1
- Date: Mon, 26 May 2025 13:18:32 GMT
- Title: An Explainable Diagnostic Framework for Neurodegenerative Dementias via Reinforcement-Optimized LLM Reasoning
- Authors: Andrew Zamai, Nathanael Fijalkow, Boris Mansencal, Laurent Simon, Eloi Navet, Pierrick Coupe,
- Abstract summary: We propose a framework that integrates two core components to enhance diagnostic transparency.<n>First, we introduce a modular pipeline for converting 3D T1-weighted brain MRIs into textual radiology reports.<n>Second, we explore the potential of modern Large Language Models (LLMs) to assist clinicians in the differential diagnosis.
- Score: 1.5646349560044959
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The differential diagnosis of neurodegenerative dementias is a challenging clinical task, mainly because of the overlap in symptom presentation and the similarity of patterns observed in structural neuroimaging. To improve diagnostic efficiency and accuracy, deep learning-based methods such as Convolutional Neural Networks and Vision Transformers have been proposed for the automatic classification of brain MRIs. However, despite their strong predictive performance, these models find limited clinical utility due to their opaque decision making. In this work, we propose a framework that integrates two core components to enhance diagnostic transparency. First, we introduce a modular pipeline for converting 3D T1-weighted brain MRIs into textual radiology reports. Second, we explore the potential of modern Large Language Models (LLMs) to assist clinicians in the differential diagnosis between Frontotemporal dementia subtypes, Alzheimer's disease, and normal aging based on the generated reports. To bridge the gap between predictive accuracy and explainability, we employ reinforcement learning to incentivize diagnostic reasoning in LLMs. Without requiring supervised reasoning traces or distillation from larger models, our approach enables the emergence of structured diagnostic rationales grounded in neuroimaging findings. Unlike post-hoc explainability methods that retrospectively justify model decisions, our framework generates diagnostic rationales as part of the inference process-producing causally grounded explanations that inform and guide the model's decision-making process. In doing so, our framework matches the diagnostic performance of existing deep learning methods while offering rationales that support its diagnostic conclusions.
Related papers
- Generative Cognitive Diagnosis [13.877294923915118]
We introduce a novel generative diagnosis paradigm that fundamentally shifts cognitive diagnosis from predictive to generative modeling.<n>We propose two simple yet effective instantiations of this paradigm: Generative Item Response Theory (G-IRT) and Generative Neural Cognitive Diagnosis Model (G-NCDM)<n>Our framework opens new avenues for cognitive diagnosis applications in artificial intelligence.
arXiv Detail & Related papers (2025-07-13T23:55:05Z) - RadFabric: Agentic AI System with Reasoning Capability for Radiology [61.25593938175618]
RadFabric is a multi agent, multimodal reasoning framework that unifies visual and textual analysis for comprehensive CXR interpretation.<n>System employs specialized CXR agents for pathology detection, an Anatomical Interpretation Agent to map visual findings to precise anatomical structures, and a Reasoning Agent powered by large multimodal reasoning models to synthesize visual, anatomical, and clinical data into transparent and evidence based diagnoses.
arXiv Detail & Related papers (2025-06-17T03:10:33Z) - REMEMBER: Retrieval-based Explainable Multimodal Evidence-guided Modeling for Brain Evaluation and Reasoning in Zero- and Few-shot Neurodegenerative Diagnosis [6.446611581074913]
We introduce REMEMBER -- Retrieval-based Explainable Multimodalively-guided Modeling for Brain Evaluation and Reasoning.<n>REMEMBER is a new machine learning framework that facilitates zero- and few-shot Alzheimer's diagnosis using brain MRI scans.<n> Experimental results demonstrate that REMEMBER achieves robust zero- and few-shot performance.
arXiv Detail & Related papers (2025-04-12T22:06:15Z) - ContrastDiagnosis: Enhancing Interpretability in Lung Nodule Diagnosis
Using Contrastive Learning [23.541034347602935]
Clinicians' distrust of black box models has hindered the clinical deployment of AI products.
We propose ContrastDiagnosis, a straightforward yet effective interpretable diagnosis framework.
High diagnostic accuracy was achieved with AUC of 0.977 while maintain a high transparency and explainability.
arXiv Detail & Related papers (2024-03-08T13:00:52Z) - Towards the Identifiability and Explainability for Personalized Learner
Modeling: An Inductive Paradigm [36.60917255464867]
We propose an identifiable cognitive diagnosis framework (ID-CDF) based on a novel response-proficiency-response paradigm inspired by encoder-decoder models.
We show that ID-CDF can effectively address the problems without loss of diagnosis preciseness.
arXiv Detail & Related papers (2023-09-01T07:18:02Z) - A Transformer-based representation-learning model with unified
processing of multimodal input for clinical diagnostics [63.106382317917344]
We report a Transformer-based representation-learning model as a clinical diagnostic aid that processes multimodal input in a unified manner.
The unified model outperformed an image-only model and non-unified multimodal diagnosis models in the identification of pulmonary diseases.
arXiv Detail & Related papers (2023-06-01T16:23:47Z) - Brain Imaging-to-Graph Generation using Adversarial Hierarchical Diffusion Models for MCI Causality Analysis [44.45598796591008]
Brain imaging-to-graph generation (BIGG) framework is proposed to map functional magnetic resonance imaging (fMRI) into effective connectivity for mild cognitive impairment analysis.
The hierarchical transformers in the generator are designed to estimate the noise at multiple scales.
Evaluations of the ADNI dataset demonstrate the feasibility and efficacy of the proposed model.
arXiv Detail & Related papers (2023-05-18T06:54:56Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
We propose a method that reformulates the generation task of diffusion models as a patch-based estimation of healthy brain anatomy.
We evaluate our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative improvement of 25.1% compared to existing baselines.
arXiv Detail & Related papers (2023-03-07T09:40:22Z) - SpineOne: A One-Stage Detection Framework for Degenerative Discs and
Vertebrae [54.751251046196494]
We propose a one-stage detection framework termed SpineOne to simultaneously localize and classify degenerative discs and vertebrae from MRI slices.
SpineOne is built upon the following three key techniques: 1) a new design of the keypoint heatmap to facilitate simultaneous keypoint localization and classification; 2) the use of attention modules to better differentiate the representations between discs and vertebrae; and 3) a novel gradient-guided objective association mechanism to associate multiple learning objectives at the later training stage.
arXiv Detail & Related papers (2021-10-28T12:59:06Z) - BI-RADS-Net: An Explainable Multitask Learning Approach for Cancer
Diagnosis in Breast Ultrasound Images [69.41441138140895]
This paper introduces BI-RADS-Net, a novel explainable deep learning approach for cancer detection in breast ultrasound images.
The proposed approach incorporates tasks for explaining and classifying breast tumors, by learning feature representations relevant to clinical diagnosis.
Explanations of the predictions (benign or malignant) are provided in terms of morphological features that are used by clinicians for diagnosis and reporting in medical practice.
arXiv Detail & Related papers (2021-10-05T19:14:46Z) - Learn-Explain-Reinforce: Counterfactual Reasoning and Its Guidance to
Reinforce an Alzheimer's Disease Diagnosis Model [1.6287500717172143]
We propose a novel framework that unifies diagnostic model learning, visual explanation generation, and trained diagnostic model reinforcement.
For the visual explanation, we generate a counterfactual map that transforms an input sample to be identified as a target label.
arXiv Detail & Related papers (2021-08-21T07:29:13Z) - An explainable two-dimensional single model deep learning approach for
Alzheimer's disease diagnosis and brain atrophy localization [3.9281410693767036]
We propose an end-to-end deep learning approach for automated diagnosis of Alzheimer's disease (AD) and localization of important brain regions related to the disease from sMRI data.
Our approach has been evaluated on two publicly accessible datasets for two classification tasks of AD vs. cognitively normal (CN) and progressive MCI (pMCI) vs. stable MCI (sMCI)
The experimental results indicate that our approach outperforms the state-of-the-art approaches, including those using multi-model and 3D CNN methods.
arXiv Detail & Related papers (2021-07-28T07:19:00Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
Clinical diagnosis, which aims to assign diagnosis codes for a patient based on the clinical note, plays an essential role in clinical decision-making.
We propose a novel framework to combine the inheritance-guided hierarchical assignment and co-occurrence graph propagation for clinical automatic diagnosis.
arXiv Detail & Related papers (2021-01-27T13:16:51Z) - An Explainable 3D Residual Self-Attention Deep Neural Network FOR Joint
Atrophy Localization and Alzheimer's Disease Diagnosis using Structural MRI [22.34325971680329]
We have proposed a novel computer-aided approach for early diagnosis of Alzheimer's disease by introducing an explainable 3D Residual Attention Deep Neural Network (3D ResAttNet) for end-to-end learning from sMRI scans.
The experimental results show that the proposed approach has a competitive advantage over the state-of-the-art models in terms of accuracy performance and generalizability.
arXiv Detail & Related papers (2020-08-10T11:08:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.