Generative Cognitive Diagnosis
- URL: http://arxiv.org/abs/2507.09831v1
- Date: Sun, 13 Jul 2025 23:55:05 GMT
- Title: Generative Cognitive Diagnosis
- Authors: Jiatong Li, Qi Liu, Mengxiao Zhu,
- Abstract summary: We introduce a novel generative diagnosis paradigm that fundamentally shifts cognitive diagnosis from predictive to generative modeling.<n>We propose two simple yet effective instantiations of this paradigm: Generative Item Response Theory (G-IRT) and Generative Neural Cognitive Diagnosis Model (G-NCDM)<n>Our framework opens new avenues for cognitive diagnosis applications in artificial intelligence.
- Score: 13.877294923915118
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Cognitive diagnosis (CD) models latent cognitive states of human learners by analyzing their response patterns on diagnostic tests, serving as a crucial machine learning technique for educational assessment and evaluation. Traditional cognitive diagnosis models typically follow a transductive prediction paradigm that optimizes parameters to fit response scores and extract learner abilities. These approaches face significant limitations as they cannot perform instant diagnosis for new learners without computationally expensive retraining and produce diagnostic outputs with limited reliability. In this study, we introduces a novel generative diagnosis paradigm that fundamentally shifts CD from predictive to generative modeling, enabling inductive inference of cognitive states without parameter re-optimization. We propose two simple yet effective instantiations of this paradigm: Generative Item Response Theory (G-IRT) and Generative Neural Cognitive Diagnosis Model (G-NCDM), which achieve excellent performance improvements over traditional methods. The generative approach disentangles cognitive state inference from response prediction through a well-designed generation process that incorporates identifiability and monotonicity conditions. Extensive experiments on real-world datasets demonstrate the effectiveness of our methodology in addressing scalability and reliability challenges, especially $\times 100$ speedup for the diagnosis of new learners. Our framework opens new avenues for cognitive diagnosis applications in artificial intelligence, particularly for intelligent model evaluation and intelligent education systems. The code is available at https://github.com/CSLiJT/Generative-CD.git.
Related papers
- Medical Reasoning in the Era of LLMs: A Systematic Review of Enhancement Techniques and Applications [59.721265428780946]
Large Language Models (LLMs) in medicine have enabled impressive capabilities, yet a critical gap remains in their ability to perform systematic, transparent, and verifiable reasoning.<n>This paper provides the first systematic review of this emerging field.<n>We propose a taxonomy of reasoning enhancement techniques, categorized into training-time strategies and test-time mechanisms.
arXiv Detail & Related papers (2025-08-01T14:41:31Z) - Dynamic Programming Techniques for Enhancing Cognitive Representation in Knowledge Tracing [125.75923987618977]
We propose the Cognitive Representation Dynamic Programming based Knowledge Tracing (CRDP-KT) model.<n>It is a dynamic programming algorithm to optimize cognitive representations based on the difficulty of the questions and the performance intervals between them.<n>It provides more accurate and systematic input features for subsequent model training, thereby minimizing distortion in the simulation of cognitive states.
arXiv Detail & Related papers (2025-06-03T14:44:48Z) - An Explainable Diagnostic Framework for Neurodegenerative Dementias via Reinforcement-Optimized LLM Reasoning [1.5646349560044959]
We propose a framework that integrates two core components to enhance diagnostic transparency.<n>First, we introduce a modular pipeline for converting 3D T1-weighted brain MRIs into textual radiology reports.<n>Second, we explore the potential of modern Large Language Models (LLMs) to assist clinicians in the differential diagnosis.
arXiv Detail & Related papers (2025-05-26T13:18:32Z) - A Survey of Models for Cognitive Diagnosis: New Developments and Future Directions [66.40362209055023]
This paper aims to provide a survey of current models for cognitive diagnosis, with more attention on new developments using machine learning-based methods.
By comparing the model structures, parameter estimation algorithms, model evaluation methods and applications, we provide a relatively comprehensive review of the recent trends in cognitive diagnosis models.
arXiv Detail & Related papers (2024-07-07T18:02:00Z) - Unified Uncertainty Estimation for Cognitive Diagnosis Models [70.46998436898205]
We propose a unified uncertainty estimation approach for a wide range of cognitive diagnosis models.
We decompose the uncertainty of diagnostic parameters into data aspect and model aspect.
Our method is effective and can provide useful insights into the uncertainty of cognitive diagnosis.
arXiv Detail & Related papers (2024-03-09T13:48:20Z) - ReliCD: A Reliable Cognitive Diagnosis Framework with Confidence
Awareness [26.60714613122676]
Existing approaches often suffer from the issue of overconfidence in predicting students' mastery levels.
We propose a novel Reliable Cognitive Diagnosis(ReliCD) framework, which can quantify the confidence of the diagnosis feedback.
arXiv Detail & Related papers (2023-12-29T07:30:58Z) - Towards the Identifiability and Explainability for Personalized Learner
Modeling: An Inductive Paradigm [36.60917255464867]
We propose an identifiable cognitive diagnosis framework (ID-CDF) based on a novel response-proficiency-response paradigm inspired by encoder-decoder models.
We show that ID-CDF can effectively address the problems without loss of diagnosis preciseness.
arXiv Detail & Related papers (2023-09-01T07:18:02Z) - UIILD: A Unified Interpretable Intelligent Learning Diagnosis Framework
for Intelligent Tutoring Systems [8.354034992258482]
The proposed unified interpretable intelligent learning diagnosis (UIILD) framework benefits from the powerful representation learning ability of deep learning and the interpretability of psychometrics.
Within the proposed framework, this paper presents a two-channel learning diagnosis mechanism LDM-ID as well as a three-channel learning diagnosis mechanism LDM-HMI.
arXiv Detail & Related papers (2022-07-07T07:04:22Z) - NeuralSympCheck: A Symptom Checking and Disease Diagnostic Neural Model
with Logic Regularization [59.15047491202254]
symptom checking systems inquire users for their symptoms and perform a rapid and affordable medical assessment of their condition.
We propose a new approach based on the supervised learning of neural models with logic regularization.
Our experiments show that the proposed approach outperforms the best existing methods in the accuracy of diagnosis when the number of diagnoses and symptoms is large.
arXiv Detail & Related papers (2022-06-02T07:57:17Z) - Neuro-symbolic Neurodegenerative Disease Modeling as Probabilistic
Programmed Deep Kernels [93.58854458951431]
We present a probabilistic programmed deep kernel learning approach to personalized, predictive modeling of neurodegenerative diseases.
Our analysis considers a spectrum of neural and symbolic machine learning approaches.
We run evaluations on the problem of Alzheimer's disease prediction, yielding results that surpass deep learning.
arXiv Detail & Related papers (2020-09-16T15:16:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.