MLR-Bench: Evaluating AI Agents on Open-Ended Machine Learning Research
- URL: http://arxiv.org/abs/2505.19955v2
- Date: Tue, 01 Jul 2025 17:01:12 GMT
- Title: MLR-Bench: Evaluating AI Agents on Open-Ended Machine Learning Research
- Authors: Hui Chen, Miao Xiong, Yujie Lu, Wei Han, Ailin Deng, Yufei He, Jiaying Wu, Yibo Li, Yue Liu, Bryan Hooi,
- Abstract summary: MLR-Bench is a comprehensive benchmark for evaluating AI agents on open-ended machine learning research.<n>MLR-Bench includes three key components: (1) 201 research tasks sourced from NeurIPS, ICLR, and ICML workshops covering diverse ML topics; (2) MLR-Judge, an automated evaluation framework combining LLM-based reviewers with carefully designed review rubrics to assess research quality; and (3) MLR-Agent, a modular agent scaffold capable of completing research tasks through four stages: idea generation, proposal formulation, experimentation, and paper writing.
- Score: 45.13919034931968
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in AI agents have demonstrated their growing potential to drive and support scientific discovery. In this work, we introduce MLR-Bench, a comprehensive benchmark for evaluating AI agents on open-ended machine learning research. MLR-Bench includes three key components: (1) 201 research tasks sourced from NeurIPS, ICLR, and ICML workshops covering diverse ML topics; (2) MLR-Judge, an automated evaluation framework combining LLM-based reviewers with carefully designed review rubrics to assess research quality; and (3) MLR-Agent, a modular agent scaffold capable of completing research tasks through four stages: idea generation, proposal formulation, experimentation, and paper writing. Our framework supports both stepwise assessment across these distinct research stages, and end-to-end evaluation of the final research paper. We then use MLR-Bench to evaluate six frontier LLMs and an advanced coding agent, finding that while LLMs are effective at generating coherent ideas and well-structured papers, current coding agents frequently (e.g., in 80% of the cases) produce fabricated or invalidated experimental results--posing a major barrier to scientific reliability. We validate MLR-Judge through human evaluation, showing high agreement with expert reviewers, supporting its potential as a scalable tool for research evaluation. We open-source MLR-Bench to help the community benchmark, diagnose, and improve AI research agents toward trustworthy and transparent scientific discovery.
Related papers
- AblationBench: Evaluating Automated Planning of Ablations in Empirical AI Research [34.173947968362675]
AblationBench is a benchmark suite for evaluating agents on ablation planning tasks in empirical AI research.<n>It includes two tasks: AuthorAblation, which helps authors propose ablation experiments based on a method section, and ReviewerAblation, which helps reviewers find missing ablations in a full paper.<n>For both tasks, we develop LM-based judges that serve as an automatic evaluation framework.
arXiv Detail & Related papers (2025-07-09T12:07:38Z) - MLRC-Bench: Can Language Agents Solve Machine Learning Research Challenges? [64.62421656031128]
MLRC-Bench is a benchmark designed to quantify how effectively language agents can tackle challenging Machine Learning (ML) Research Competitions.<n>Unlike prior work, MLRC-Bench measures the key steps of proposing and implementing novel research methods.<n>Even the best-performing tested agent closes only 9.3% of the gap between baseline and top human participant scores.
arXiv Detail & Related papers (2025-04-13T19:35:43Z) - ReMA: Learning to Meta-think for LLMs with Multi-Agent Reinforcement Learning [54.787341008881036]
We introduce Reinforced Meta-thinking Agents (ReMA), a novel framework that leverages Multi-Agent Reinforcement Learning (MARL) to elicit meta-thinking behaviors.<n>ReMA decouples the reasoning process into two hierarchical agents: a high-level meta-thinking agent responsible for generating strategic oversight and plans, and a low-level reasoning agent for detailed executions.<n> Experimental results demonstrate that ReMA outperforms single-agent RL baselines on complex reasoning tasks.
arXiv Detail & Related papers (2025-03-12T16:05:31Z) - MLGym: A New Framework and Benchmark for Advancing AI Research Agents [51.9387884953294]
We introduce Meta MLGym and MLGym-Bench, a new framework and benchmark for evaluating and developing large language models on AI research tasks.<n>This is the first Gym environment for machine learning (ML) tasks, enabling research on reinforcement learning (RL) algorithms for training such agents.<n>We evaluate a number of frontier large language models (LLMs) on our benchmarks such as Claude-3.5-Sonnet, Llama-3.1 405B, GPT-4o, o1-preview, and Gemini-1.5 Pro.
arXiv Detail & Related papers (2025-02-20T12:28:23Z) - Agent Laboratory: Using LLM Agents as Research Assistants [26.588095150057384]
Agent Laboratory is an autonomous framework capable of completing the entire research process.<n>It accepts a human-provided research idea and progresses through three stages--literature review, experimentation, and report writing.<n>Agent Laboratory significantly reduces research expenses, achieving an 84% decrease compared to previous autonomous research methods.
arXiv Detail & Related papers (2025-01-08T01:58:42Z) - MME-Survey: A Comprehensive Survey on Evaluation of Multimodal LLMs [97.94579295913606]
Multimodal Large Language Models (MLLMs) have garnered increased attention from both industry and academia.<n>In the development process, evaluation is critical since it provides intuitive feedback and guidance on improving models.<n>This work aims to offer researchers an easy grasp of how to effectively evaluate MLLMs according to different needs and to inspire better evaluation methods.
arXiv Detail & Related papers (2024-11-22T18:59:54Z) - CycleResearcher: Improving Automated Research via Automated Review [37.03497673861402]
This paper explores the possibility of using open-source post-trained large language models (LLMs) as autonomous agents capable of performing the full cycle of automated research and review.<n>To train these models, we develop two new datasets, reflecting real-world machine learning research and peer review dynamics.<n>Our results demonstrate that CycleReviewer achieves promising performance with a 26.89% reduction in mean absolute error (MAE) compared to individual human reviewers in predicting paper scores.
arXiv Detail & Related papers (2024-10-28T08:10:21Z) - Large Multimodal Agents: A Survey [78.81459893884737]
Large language models (LLMs) have achieved superior performance in powering text-based AI agents.
There is an emerging research trend focused on extending these LLM-powered AI agents into the multimodal domain.
This review aims to provide valuable insights and guidelines for future research in this rapidly evolving field.
arXiv Detail & Related papers (2024-02-23T06:04:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.