Agent Laboratory: Using LLM Agents as Research Assistants
- URL: http://arxiv.org/abs/2501.04227v1
- Date: Wed, 08 Jan 2025 01:58:42 GMT
- Title: Agent Laboratory: Using LLM Agents as Research Assistants
- Authors: Samuel Schmidgall, Yusheng Su, Ze Wang, Ximeng Sun, Jialian Wu, Xiaodong Yu, Jiang Liu, Zicheng Liu, Emad Barsoum,
- Abstract summary: Agent Laboratory is an autonomous framework capable of completing the entire research process.
It accepts a human-provided research idea and progresses through three stages--literature review, experimentation, and report writing.
Agent Laboratory significantly reduces research expenses, achieving an 84% decrease compared to previous autonomous research methods.
- Score: 26.588095150057384
- License:
- Abstract: Historically, scientific discovery has been a lengthy and costly process, demanding substantial time and resources from initial conception to final results. To accelerate scientific discovery, reduce research costs, and improve research quality, we introduce Agent Laboratory, an autonomous LLM-based framework capable of completing the entire research process. This framework accepts a human-provided research idea and progresses through three stages--literature review, experimentation, and report writing to produce comprehensive research outputs, including a code repository and a research report, while enabling users to provide feedback and guidance at each stage. We deploy Agent Laboratory with various state-of-the-art LLMs and invite multiple researchers to assess its quality by participating in a survey, providing human feedback to guide the research process, and then evaluate the final paper. We found that: (1) Agent Laboratory driven by o1-preview generates the best research outcomes; (2) The generated machine learning code is able to achieve state-of-the-art performance compared to existing methods; (3) Human involvement, providing feedback at each stage, significantly improves the overall quality of research; (4) Agent Laboratory significantly reduces research expenses, achieving an 84% decrease compared to previous autonomous research methods. We hope Agent Laboratory enables researchers to allocate more effort toward creative ideation rather than low-level coding and writing, ultimately accelerating scientific discovery.
Related papers
- MLGym: A New Framework and Benchmark for Advancing AI Research Agents [51.9387884953294]
We introduce Meta MLGym and MLGym-Bench, a new framework and benchmark for evaluating and developing large language models on AI research tasks.
This is the first Gym environment for machine learning (ML) tasks, enabling research on reinforcement learning (RL) algorithms for training such agents.
We evaluate a number of frontier large language models (LLMs) on our benchmarks such as Claude-3.5-Sonnet, Llama-3.1 405B, GPT-4o, o1-preview, and Gemini-1.5 Pro.
arXiv Detail & Related papers (2025-02-20T12:28:23Z) - From Intention To Implementation: Automating Biomedical Research via LLMs [30.32209981487504]
This paper introduces BioResearcher, the first end-to-end automated system designed to streamline the entire biomedical research process.
By decomposing complex tasks into logically related sub-tasks, BioResearcher effectively addresses the challenges of multidisciplinary requirements and logical complexity.
BioResearcher successfully achieves an average execution success rate of 63.07% across eight previously unmet research objectives.
arXiv Detail & Related papers (2024-12-12T16:35:05Z) - CycleResearcher: Improving Automated Research via Automated Review [37.03497673861402]
This paper explores the possibility of using open-source post-trained large language models (LLMs) as autonomous agents capable of performing the full cycle of automated research and review.
To train these models, we develop two new datasets, reflecting real-world machine learning research and peer review dynamics.
In research, the papers generated by the CycleResearcher model achieved a score of 5.36 in simulated peer reviews, surpassing the preprint level of 5.24 from human experts and approaching the accepted paper level of 5.69.
arXiv Detail & Related papers (2024-10-28T08:10:21Z) - Chain of Ideas: Revolutionizing Research Via Novel Idea Development with LLM Agents [64.64280477958283]
An exponential increase in scientific literature makes it challenging for researchers to stay current with recent advances and identify meaningful research directions.
Recent developments in large language models(LLMs) suggest a promising avenue for automating the generation of novel research ideas.
We propose a Chain-of-Ideas(CoI) agent, an LLM-based agent that organizes relevant literature in a chain structure to effectively mirror the progressive development in a research domain.
arXiv Detail & Related papers (2024-10-17T03:26:37Z) - Can LLMs Generate Novel Research Ideas? A Large-Scale Human Study with 100+ NLP Researchers [90.26363107905344]
Large language models (LLMs) have sparked optimism about their potential to accelerate scientific discovery.
No evaluations have shown that LLM systems can take the very first step of producing novel, expert-level ideas.
arXiv Detail & Related papers (2024-09-06T08:25:03Z) - DISCOVERYWORLD: A Virtual Environment for Developing and Evaluating Automated Scientific Discovery Agents [49.74065769505137]
We introduce DISCOVERYWORLD, the first virtual environment for developing and benchmarking an agent's ability to perform complete cycles of novel scientific discovery.
It includes 120 different challenge tasks spanning eight topics each with three levels of difficulty and several parametric variations.
We find that strong baseline agents, that perform well in prior published environments, struggle on most DISCOVERYWORLD tasks.
arXiv Detail & Related papers (2024-06-10T20:08:44Z) - ResearchAgent: Iterative Research Idea Generation over Scientific Literature with Large Language Models [56.08917291606421]
ResearchAgent is an AI-based system for ideation and operationalization of novel work.
ResearchAgent automatically defines novel problems, proposes methods and designs experiments, while iteratively refining them.
We experimentally validate our ResearchAgent on scientific publications across multiple disciplines.
arXiv Detail & Related papers (2024-04-11T13:36:29Z) - SurveyAgent: A Conversational System for Personalized and Efficient Research Survey [50.04283471107001]
This paper introduces SurveyAgent, a novel conversational system designed to provide personalized and efficient research survey assistance to researchers.
SurveyAgent integrates three key modules: Knowledge Management for organizing papers, Recommendation for discovering relevant literature, and Query Answering for engaging with content on a deeper level.
Our evaluation demonstrates SurveyAgent's effectiveness in streamlining research activities, showcasing its capability to facilitate how researchers interact with scientific literature.
arXiv Detail & Related papers (2024-04-09T15:01:51Z) - A Comprehensive Attempt to Research Statement Generation [39.8491923428562]
We propose the research statement generation task which aims to summarize one's research achievements.
We construct an RSG dataset with 62 research statements and the corresponding 1,203 publications.
Our method outperforms all the baselines with better content coverage and coherence.
arXiv Detail & Related papers (2021-04-25T03:57:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.