AblationBench: Evaluating Automated Planning of Ablations in Empirical AI Research
- URL: http://arxiv.org/abs/2507.08038v1
- Date: Wed, 09 Jul 2025 12:07:38 GMT
- Title: AblationBench: Evaluating Automated Planning of Ablations in Empirical AI Research
- Authors: Talor Abramovich, Gal Chechik,
- Abstract summary: AblationBench is a benchmark suite for evaluating agents on ablation planning tasks in empirical AI research.<n>It includes two tasks: AuthorAblation, which helps authors propose ablation experiments based on a method section, and ReviewerAblation, which helps reviewers find missing ablations in a full paper.<n>For both tasks, we develop LM-based judges that serve as an automatic evaluation framework.
- Score: 34.173947968362675
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Autonomous agents built on language models (LMs) are showing increasing popularity in many fields, including scientific research. AI co-scientists aim to support or automate parts of the research process using these agents. A key component of empirical AI research is the design of ablation experiments. To this end, we introduce AblationBench, a benchmark suite for evaluating agents on ablation planning tasks in empirical AI research. It includes two tasks: AuthorAblation, which helps authors propose ablation experiments based on a method section and contains 83 instances, and ReviewerAblation, which helps reviewers find missing ablations in a full paper and contains 350 instances. For both tasks, we develop LM-based judges that serve as an automatic evaluation framework. Our experiments with frontier LMs show that these tasks remain challenging, with the best-performing LM system identifying only 29% of the original ablations on average. Lastly, we analyze the limitations of current LMs on these tasks, and find that chain-of-thought prompting outperforms the currently existing agent-based approach.
Related papers
- Large Language Model-Based Agents for Automated Research Reproducibility: An Exploratory Study in Alzheimer's Disease [1.9938547353667109]
We used the "Quick Access" dataset of the National Alzheimer's Coordinating Center.<n>We identified highly cited published research manuscripts using NACC data.<n>We created a simulated research team of LLM-based autonomous agents tasked with writing and executing code.
arXiv Detail & Related papers (2025-05-29T01:31:55Z) - MLR-Bench: Evaluating AI Agents on Open-Ended Machine Learning Research [45.13919034931968]
MLR-Bench is a comprehensive benchmark for evaluating AI agents on open-ended machine learning research.<n>MLR-Bench includes three key components: (1) 201 research tasks sourced from NeurIPS, ICLR, and ICML workshops covering diverse ML topics; (2) MLR-Judge, an automated evaluation framework combining LLM-based reviewers with carefully designed review rubrics to assess research quality; and (3) MLR-Agent, a modular agent scaffold capable of completing research tasks through four stages: idea generation, proposal formulation, experimentation, and paper writing.
arXiv Detail & Related papers (2025-05-26T13:18:37Z) - IDA-Bench: Evaluating LLMs on Interactive Guided Data Analysis [60.32962597618861]
IDA-Bench is a novel benchmark evaluating large language models in multi-round interactive scenarios.<n>Agent performance is judged by comparing its final numerical output to the human-derived baseline.<n>Even state-of-the-art coding agents (like Claude-3.7-thinking) succeed on 50% of the tasks, highlighting limitations not evident in single-turn tests.
arXiv Detail & Related papers (2025-05-23T09:37:52Z) - ResearchCodeAgent: An LLM Multi-Agent System for Automated Codification of Research Methodologies [16.90884865239373]
We introduce ResearchCodeAgent, a novel multi-agent system to automate the codification of research methodologies.<n>The system bridges the gap between high-level research concepts and their practical implementation.<n>ResearchCodeAgent represents a significant step towards the research implementation process, potentially accelerating the pace of machine learning research.
arXiv Detail & Related papers (2025-04-28T07:18:45Z) - MLRC-Bench: Can Language Agents Solve Machine Learning Research Challenges? [64.62421656031128]
MLRC-Bench is a benchmark designed to quantify how effectively language agents can tackle challenging Machine Learning (ML) Research Competitions.<n>Unlike prior work, MLRC-Bench measures the key steps of proposing and implementing novel research methods.<n>Even the best-performing tested agent closes only 9.3% of the gap between baseline and top human participant scores.
arXiv Detail & Related papers (2025-04-13T19:35:43Z) - PaperBench: Evaluating AI's Ability to Replicate AI Research [3.4567792239799133]
PaperBench is a benchmark evaluating the ability of AI agents to replicate state-of-the-art AI research.<n>Agents must replicate 20 ICML 2024 Spotlight and Oral papers from scratch.<n>PaperBench contains 8,316 individually gradable tasks.
arXiv Detail & Related papers (2025-04-02T15:55:24Z) - SUPER: Evaluating Agents on Setting Up and Executing Tasks from Research Repositories [55.161075901665946]
Super aims to capture the realistic challenges faced by researchers working with Machine Learning (ML) and Natural Language Processing (NLP) research repositories.
Our benchmark comprises three distinct problem sets: 45 end-to-end problems with annotated expert solutions, 152 sub problems derived from the expert set that focus on specific challenges, and 602 automatically generated problems for larger-scale development.
We show that state-of-the-art approaches struggle to solve these problems with the best model (GPT-4o) solving only 16.3% of the end-to-end set, and 46.1% of the scenarios.
arXiv Detail & Related papers (2024-09-11T17:37:48Z) - Automatic benchmarking of large multimodal models via iterative experiment programming [71.78089106671581]
We present APEx, the first framework for automatic benchmarking of LMMs.
Given a research question expressed in natural language, APEx leverages a large language model (LLM) and a library of pre-specified tools to generate a set of experiments for the model at hand.
The report drives the testing procedure: based on the current status of the investigation, APEx chooses which experiments to perform and whether the results are sufficient to draw conclusions.
arXiv Detail & Related papers (2024-06-18T06:43:46Z) - System for systematic literature review using multiple AI agents:
Concept and an empirical evaluation [5.194208843843004]
We introduce a novel multi-AI agent model designed to fully automate the process of conducting Systematic Literature Reviews.
The model operates through a user-friendly interface where researchers input their topic.
It generates a search string used to retrieve relevant academic papers.
The model then autonomously summarizes the abstracts of these papers.
arXiv Detail & Related papers (2024-03-13T10:27:52Z) - MatPlotAgent: Method and Evaluation for LLM-Based Agentic Scientific Data Visualization [86.61052121715689]
MatPlotAgent is a model-agnostic framework designed to automate scientific data visualization tasks.
MatPlotBench is a high-quality benchmark consisting of 100 human-verified test cases.
arXiv Detail & Related papers (2024-02-18T04:28:28Z) - MLAgentBench: Evaluating Language Agents on Machine Learning Experimentation [96.71370747681078]
We introduce MLAgentBench, a suite of 13 tasks ranging from improving model performance on CIFAR-10 to recent research problems like BabyLM.
For each task, an agent can perform actions like reading/writing files, executing code, and inspecting outputs.
We benchmark agents based on Claude v1.0, Claude v2.1, Claude v3 Opus, GPT-4, GPT-4-turbo, Gemini-Pro, and Mixtral and find that a Claude v3 Opus agent is the best in terms of success rate.
arXiv Detail & Related papers (2023-10-05T04:06:12Z) - A Survey on Large Language Model based Autonomous Agents [105.2509166861984]
Large language models (LLMs) have demonstrated remarkable potential in achieving human-level intelligence.<n>This paper delivers a systematic review of the field of LLM-based autonomous agents from a holistic perspective.<n>We present a comprehensive overview of the diverse applications of LLM-based autonomous agents in the fields of social science, natural science, and engineering.
arXiv Detail & Related papers (2023-08-22T13:30:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.