Spatiotemporal Causal Decoupling Model for Air Quality Forecasting
- URL: http://arxiv.org/abs/2505.20119v1
- Date: Mon, 26 May 2025 15:21:57 GMT
- Title: Spatiotemporal Causal Decoupling Model for Air Quality Forecasting
- Authors: Jiaming Ma, Guanjun Wang, Sheng Huang, Kuo Yang, Binwu Wang, Pengkun Wang, Yang Wang,
- Abstract summary: We employ the causal graph method to scrutinize the constraints of existing research in modeling the causal relationships between the air quality index (AQI) and meteorological features.<n>We introduce a novel air quality forecasting model, AirCade, which incorporates a causal decoupling approach.<n>Our evaluation of AirCade on an open-source air quality dataset demonstrates over 20% relative improvement over state-of-the-art models.
- Score: 11.49002971545212
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to the profound impact of air pollution on human health, livelihoods, and economic development, air quality forecasting is of paramount significance. Initially, we employ the causal graph method to scrutinize the constraints of existing research in comprehensively modeling the causal relationships between the air quality index (AQI) and meteorological features. In order to enhance prediction accuracy, we introduce a novel air quality forecasting model, AirCade, which incorporates a causal decoupling approach. AirCade leverages a spatiotemporal module in conjunction with knowledge embedding techniques to capture the internal dynamics of AQI. Subsequently, a causal decoupling module is proposed to disentangle synchronous causality from past AQI and meteorological features, followed by the dissemination of acquired knowledge to future time steps to enhance performance. Additionally, we introduce a causal intervention mechanism to explicitly represent the uncertainty of future meteorological features, thereby bolstering the model's robustness. Our evaluation of AirCade on an open-source air quality dataset demonstrates over 20\% relative improvement over state-of-the-art models.
Related papers
- FuXi-Air: Urban Air Quality Forecasting Based on Emission-Meteorology-Pollutant multimodal Machine Learning [22.270124698874934]
An air quality forecasting model, named FuXi-Air, has been constructed based on multimodal data fusion to support high-precision air quality forecasting.<n>The model successfully completes 72-hour forecasts for six major air pollutants at an hourly resolution across multiple monitoring sites within 25-30 seconds.
arXiv Detail & Related papers (2025-06-09T10:27:50Z) - Air Quality Prediction with A Meteorology-Guided Modality-Decoupled Spatio-Temporal Network [47.699409089023696]
Air quality prediction plays a crucial role in public health and environmental protection.<n>Existing works underestimate the critical role atmospheric conditions in air quality prediction.<n> MDSTNet is an encoder framework explicitly that captures atmosphere-pollution dependencies for prediction.<n>ChinaAirNet is the first dataset combining air quality records with multi-pressure-level meteorological observations.
arXiv Detail & Related papers (2025-04-14T09:18:11Z) - A HEART for the environment: Transformer-Based Spatiotemporal Modeling for Air Quality Prediction [0.0]
llull-environment is a sophisticated and scalable forecasting system for air pollution.<n>It contains an encoder-decoder convolutional neural network to forecast mean pollution levels for four key pollutants.<n>This paper investigates the augmentation of this neural network with an attention mechanism to improve predictive accuracy.
arXiv Detail & Related papers (2025-02-26T10:54:27Z) - Deep Spatio-Temporal Neural Network for Air Quality Reanalysis [17.089907362560197]
We propose AQ-Net, atemporal reanalysis model for both observed and unobserved stations in the near future.<n>To learn encoding fine-grained spatial air quality estimation, we incorporate AQ-Net with the neural kNN.
arXiv Detail & Related papers (2025-02-17T15:52:22Z) - A Generative Framework for Probabilistic, Spatiotemporally Coherent Downscaling of Climate Simulation [23.504915709396204]
We present a novel generative framework that uses a score-based diffusion model trained on high-resolution reanalysis data to capture the statistical properties of local weather dynamics.<n>We demonstrate that the model generates spatially and temporally coherent weather dynamics that align with global climate output.
arXiv Detail & Related papers (2024-12-19T19:47:35Z) - Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
We focus on limited-area modeling and train our model specifically for localized region-level downstream tasks.
We consider the MENA region due to its unique climatic challenges, where accurate localized weather forecasting is crucial for managing water resources, agriculture and mitigating the impacts of extreme weather events.
Our study aims to validate the effectiveness of integrating parameter-efficient fine-tuning (PEFT) methodologies, specifically Low-Rank Adaptation (LoRA) and its variants, to enhance forecast accuracy, as well as training speed, computational resource utilization, and memory efficiency in weather and climate modeling for specific regions.
arXiv Detail & Related papers (2024-09-11T19:31:56Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
This work presents FengWu-GHR, the first data-driven global weather forecasting model running at the 0.09$circ$ horizontal resolution.
It introduces a novel approach that opens the door for operating ML-based high-resolution forecasts by inheriting prior knowledge from a low-resolution model.
The hindcast of weather prediction in 2022 indicates that FengWu-GHR is superior to the IFS-HRES.
arXiv Detail & Related papers (2024-01-28T13:23:25Z) - Towards an end-to-end artificial intelligence driven global weather forecasting system [57.5191940978886]
We present an AI-based data assimilation model, i.e., Adas, for global weather variables.
We demonstrate that Adas can assimilate global observations to produce high-quality analysis, enabling the system operate stably for long term.
We are the first to apply the methods to real-world scenarios, which is more challenging and has considerable practical application potential.
arXiv Detail & Related papers (2023-12-18T09:05:28Z) - FengWu-4DVar: Coupling the Data-driven Weather Forecasting Model with 4D Variational Assimilation [67.20588721130623]
We develop an AI-based cyclic weather forecasting system, FengWu-4DVar.
FengWu-4DVar can incorporate observational data into the data-driven weather forecasting model.
Experiments on the simulated observational dataset demonstrate that FengWu-4DVar is capable of generating reasonable analysis fields.
arXiv Detail & Related papers (2023-12-16T02:07:56Z) - Federated Learning in the Sky: Aerial-Ground Air Quality Sensing
Framework with UAV Swarms [53.38353133198842]
Air quality significantly affects human health, it is increasingly important to accurately and timely predict the Air Quality Index (AQI)
This paper proposes a new federated learning-based aerial-ground air quality sensing framework for fine-grained 3D air quality monitoring and forecasting.
For ground sensing systems, we propose a Graph Convolutional neural network-based Long Short-Term Memory (GC-LSTM) model to achieve accurate, real-time and future AQI inference.
arXiv Detail & Related papers (2020-07-23T13:32:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.