Deep Spatio-Temporal Neural Network for Air Quality Reanalysis
- URL: http://arxiv.org/abs/2502.11941v1
- Date: Mon, 17 Feb 2025 15:52:22 GMT
- Title: Deep Spatio-Temporal Neural Network for Air Quality Reanalysis
- Authors: Ammar Kheder, Benjamin Foreback, Lili Wang, Zhi-Song Liu, Michael Boy,
- Abstract summary: We propose AQ-Net, atemporal reanalysis model for both observed and unobserved stations in the near future.
To learn encoding fine-grained spatial air quality estimation, we incorporate AQ-Net with the neural kNN.
- Score: 17.089907362560197
- License:
- Abstract: Air quality prediction is key to mitigating health impacts and guiding decisions, yet existing models tend to focus on temporal trends while overlooking spatial generalization. We propose AQ-Net, a spatiotemporal reanalysis model for both observed and unobserved stations in the near future. AQ-Net utilizes the LSTM and multi-head attention for the temporal regression. We also propose a cyclic encoding technique to ensure continuous time representation. To learn fine-grained spatial air quality estimation, we incorporate AQ-Net with the neural kNN to explore feature-based interpolation, such that we can fill the spatial gaps given coarse observation stations. To demonstrate the efficiency of our model for spatiotemporal reanalysis, we use data from 2013-2017 collected in northern China for PM2.5 analysis. Extensive experiments show that AQ-Net excels in air quality reanalysis, highlighting the potential of hybrid spatio-temporal models to better capture environmental dynamics, especially in urban areas where both spatial and temporal variability are critical.
Related papers
- Conservation-informed Graph Learning for Spatiotemporal Dynamics Prediction [84.26340606752763]
In this paper, we introduce the conservation-informed GNN (CiGNN), an end-to-end explainable learning framework.
The network is designed to conform to the general symmetry conservation law via symmetry where conservative and non-conservative information passes over a multiscale space by a latent temporal marching strategy.
Results demonstrate that CiGNN exhibits remarkable baseline accuracy and generalizability, and is readily applicable to learning for prediction of varioustemporal dynamics.
arXiv Detail & Related papers (2024-12-30T13:55:59Z) - Generating Fine-Grained Causality in Climate Time Series Data for Forecasting and Anomaly Detection [67.40407388422514]
We design a conceptual fine-grained causal model named TBN Granger Causality.
Second, we propose an end-to-end deep generative model called TacSas, which discovers TBN Granger Causality in a generative manner.
We test TacSas on climate benchmark ERA5 for climate forecasting and the extreme weather benchmark of NOAA for extreme weather alerts.
arXiv Detail & Related papers (2024-08-08T06:47:21Z) - SFANet: Spatial-Frequency Attention Network for Weather Forecasting [54.470205739015434]
Weather forecasting plays a critical role in various sectors, driving decision-making and risk management.
Traditional methods often struggle to capture the complex dynamics of meteorological systems.
We propose a novel framework designed to address these challenges and enhance the accuracy of weather prediction.
arXiv Detail & Related papers (2024-05-29T08:00:15Z) - Spatio-Temporal Field Neural Networks for Air Quality Inference [13.582971831446647]
We propose a new model, Spatio-Temporal Field Neural Network, and its corresponding framework, Pyramidal Inference.
Our model achieves state-of-the-art performance in nationwide air quality inference in the Chinese Mainland.
arXiv Detail & Related papers (2024-03-02T10:14:42Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - Spatiotemporal Graph Convolutional Recurrent Neural Network Model for
Citywide Air Pollution Forecasting [0.0]
Air pollution varies in a manner and depends on many complicated factors.
An image-based representation may not be ideal as air pollution and other impact factors have natural graph structures.
A Graph Convolutional Network (GCN) can efficiently represent the spatial features of air quality readings in the whole city.
Our approach is superior to a hybrid GCN-based method in a real-world air pollution dataset.
arXiv Detail & Related papers (2023-04-25T07:57:07Z) - A case study of spatiotemporal forecasting techniques for weather forecasting [4.347494885647007]
The correlations of real-world processes aretemporal, and the data generated by them exhibits both spatial and temporal evolution.
Time series-based models are a viable alternative to numerical forecasts.
We show that decompositiontemporal prediction models reduced computational costs while improving accuracy.
arXiv Detail & Related papers (2022-09-29T13:47:02Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
We investigate a supervised machine learning approach based on deformable convolutional neural networks (deCNNs)
We forecast the North Atlantic-European weather regimes during extended boreal winter for 1 to 15 days into the future.
Due to its wider field of view, we also observe deCNN achieving considerably better performance than regular convolutional neural networks at lead times beyond 5-6 days.
arXiv Detail & Related papers (2022-02-10T11:37:00Z) - Joint Air Quality and Weather Prediction Based on Multi-Adversarial
Spatiotemporal Networks [44.34236994440102]
We propose the Multi-versaadrial recurrent Graph Neural Networks (MasterGNN) for joint air quality and weather predictions.
Specifically, we first propose a recurrent graph neural network to model heterogeneous autotemporalcorrelation among air quality and weather monitoring stations.
arXiv Detail & Related papers (2020-12-30T04:42:03Z) - Spatio-Temporal Functional Neural Networks [11.73856529960872]
We propose two novel extensions of the Neural Functional Network (FNN), a temporal regression model whose effectiveness has been proven by many researchers.
The proposed models are then deployed to solve a practical and challenging precipitation prediction problem in the meteorology field.
arXiv Detail & Related papers (2020-09-11T21:32:35Z) - Federated Learning in the Sky: Aerial-Ground Air Quality Sensing
Framework with UAV Swarms [53.38353133198842]
Air quality significantly affects human health, it is increasingly important to accurately and timely predict the Air Quality Index (AQI)
This paper proposes a new federated learning-based aerial-ground air quality sensing framework for fine-grained 3D air quality monitoring and forecasting.
For ground sensing systems, we propose a Graph Convolutional neural network-based Long Short-Term Memory (GC-LSTM) model to achieve accurate, real-time and future AQI inference.
arXiv Detail & Related papers (2020-07-23T13:32:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.