論文の概要: Balancing Interference and Correlation in Spatial Experimental Designs: A Causal Graph Cut Approach
- arxiv url: http://arxiv.org/abs/2505.20130v1
- Date: Mon, 26 May 2025 15:29:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-27 16:58:43.570356
- Title: Balancing Interference and Correlation in Spatial Experimental Designs: A Causal Graph Cut Approach
- Title(参考訳): 空間実験設計における干渉と相関のバランス:因果グラフによるアプローチ
- Authors: Zhu Jin, Li Jingyi, Zhou Hongyi, Lin Yinan, Lin Zhenhua, Shi Chengchun,
- Abstract要約: 本稿では,実験データから得られる情報の量を最適化するための空間実験の設計に焦点を当てる。
因果効果推定器の平均二乗誤差(MSE)に対する代理関数を提案する。
- 参考スコア(独自算出の注目度): 1.6191403600536431
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper focuses on the design of spatial experiments to optimize the amount of information derived from the experimental data and enhance the accuracy of the resulting causal effect estimator. We propose a surrogate function for the mean squared error (MSE) of the estimator, which facilitates the use of classical graph cut algorithms to learn the optimal design. Our proposal offers three key advances: (1) it accommodates moderate to large spatial interference effects; (2) it adapts to different spatial covariance functions; (3) it is computationally efficient. Theoretical results and numerical experiments based on synthetic environments and a dispatch simulator that models a city-scale ridesharing market, further validate the effectiveness of our design. A python implementation of our method is available at https://github.com/Mamba413/CausalGraphCut.
- Abstract(参考訳): 本稿では,実験データから得られる情報の量を最適化し,その結果の因果効果推定器の精度を高めるための空間実験の設計に焦点を当てる。
推定器の平均二乗誤差(MSE)に対する代用関数を提案し,古典的グラフカットアルゴリズムを用いて最適設計を学習する。
提案手法は,(1)空間干渉効果が中程度から大きいこと,(2)空間共分散関数に適応すること,(3)計算効率が良いこと,の3つの重要な進歩を提供する。
都市規模のライドシェアリング市場をモデルとした合成環境とディスパッチシミュレータに基づく理論的結果と数値実験により,設計の有効性がさらに検証された。
私たちのメソッドのpython実装はhttps://github.com/Mamba413/CausalGraphCut.comで公開されています。
関連論文リスト
- Probabilistic Bayesian optimal experimental design using conditional
normalizing flows [2.7689411149700685]
ベイズ最適実験設計(OED)は予算制約の下で最も有益な実験を行うことを目指している。
我々は,OED問題の解法を効率よく,スケーラブルで,実用的なアプリケーションに堅牢にするための,新しい共同最適化手法を提案する。
我々は,高次元(320$times 320)パラメータを高分解能,高次元(640$times 386)観測,および最も情報性の高い観測を選択するためのバイナリ設計を有する実用的MRI OED問題に対する性能提案手法を実証した。
論文 参考訳(メタデータ) (2024-02-28T13:59:20Z) - Efficient adjustment for complex covariates: Gaining efficiency with
DOPE [56.537164957672715]
共変量によって表現される情報のサブセットを調整可能なフレームワークを提案する。
理論的な結果に基づいて,平均処理効果(ATE)の効率的な評価を目的とした,デバイアスドアウトカム適応確率推定器(DOPE)を提案する。
その結果,DOPE は様々な観測環境において ATE 推定のための効率的かつ堅牢な手法を提供することがわかった。
論文 参考訳(メタデータ) (2024-02-20T13:02:51Z) - Effect Size Estimation for Duration Recommendation in Online Experiments: Leveraging Hierarchical Models and Objective Utility Approaches [13.504353263032359]
仮定効果サイズ(AES)の選択は、実験の期間を決定的に決定し、その結果、その精度と効率が決定される。
伝統的に、実験者はドメイン知識に基づいてAESを決定するが、この方法は多数の実験を管理するオンライン実験サービスにとって実用的ではない。
オンライン実験サービスにおけるデータ駆動型AES選択のための2つのソリューションを提案する。
論文 参考訳(メタデータ) (2023-12-20T09:34:28Z) - Equation Discovery with Bayesian Spike-and-Slab Priors and Efficient Kernels [57.46832672991433]
ケルネル学習とBayesian Spike-and-Slab pres (KBASS)に基づく新しい方程式探索法を提案する。
カーネルレグレッションを用いてターゲット関数を推定する。これはフレキシブルで表現力があり、データ空間やノイズに対してより堅牢である。
我々は,効率的な後部推論と関数推定のための予測伝搬予測最大化アルゴリズムを開発した。
論文 参考訳(メタデータ) (2023-10-09T03:55:09Z) - Learning Unnormalized Statistical Models via Compositional Optimization [73.30514599338407]
実データと人工雑音のロジスティックな損失として目的を定式化することにより, ノイズコントラスト推定(NCE)を提案する。
本稿では,非正規化モデルの負の対数類似度を最適化するための直接的アプローチについて検討する。
論文 参考訳(メタデータ) (2023-06-13T01:18:16Z) - UNETR++: Delving into Efficient and Accurate 3D Medical Image Segmentation [93.88170217725805]
本稿では,高画質なセグメンテーションマスクと,パラメータ,計算コスト,推論速度の両面での効率性を提供するUNETR++という3次元医用画像セグメンテーション手法を提案する。
我々の設計の核となるのは、空間的およびチャネル的な識別的特徴を効率的に学習する、新しい効率的な対注意ブロック(EPA)の導入である。
Synapse, BTCV, ACDC, BRaTs, Decathlon-Lungの5つのベンチマークで評価した結果, 効率と精度の両面で, コントリビューションの有効性が示された。
論文 参考訳(メタデータ) (2022-12-08T18:59:57Z) - Synthetic Principal Component Design: Fast Covariate Balancing with
Synthetic Controls [16.449993388646277]
我々は,グローバル収束的で実用的な最適化アルゴリズムを開発した。
我々は,あるデータ生成プロセスから前処理データをサンプリングする場合に,実験設計のための最初のグローバルな最適性保証を確立する。
論文 参考訳(メタデータ) (2022-11-28T11:45:54Z) - Design Amortization for Bayesian Optimal Experimental Design [70.13948372218849]
予測情報ゲイン(EIG)のバウンダリに関してパラメータ化された変分モデルを最適化する。
実験者が1つの変分モデルを最適化し、潜在的に無限に多くの設計に対してEIGを推定できる新しいニューラルアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-10-07T02:12:34Z) - Active Learning for Optimal Intervention Design in Causal Models [11.294389953686945]
本研究は、最適介入を特定するための因果的アクティブラーニング戦略を開発し、分布のインターベンショナル平均と所望の目標平均との相違によって測定した。
本研究では、Perturb-CITE-seq実験から得られた合成データと単細胞転写データの両方にアプローチを適用し、特定の細胞状態遷移を誘導する最適な摂動を同定する。
論文 参考訳(メタデータ) (2022-09-10T20:40:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。