Enhancing the Comprehensibility of Text Explanations via Unsupervised Concept Discovery
- URL: http://arxiv.org/abs/2505.20293v1
- Date: Mon, 26 May 2025 17:59:51 GMT
- Title: Enhancing the Comprehensibility of Text Explanations via Unsupervised Concept Discovery
- Authors: Yifan Sun, Danding Wang, Qiang Sheng, Juan Cao, Jintao Li,
- Abstract summary: ECO-Concept is an intrinsically interpretable framework to discover comprehensible concepts with no concept annotations.<n>Our method achieves superior performance across diverse tasks.<n>Further concept evaluations validate that the concepts learned by ECO-Concept surpassed current counterparts in comprehensibility.
- Score: 21.58887931556088
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Concept-based explainable approaches have emerged as a promising method in explainable AI because they can interpret models in a way that aligns with human reasoning. However, their adaption in the text domain remains limited. Most existing methods rely on predefined concept annotations and cannot discover unseen concepts, while other methods that extract concepts without supervision often produce explanations that are not intuitively comprehensible to humans, potentially diminishing user trust. These methods fall short of discovering comprehensible concepts automatically. To address this issue, we propose \textbf{ECO-Concept}, an intrinsically interpretable framework to discover comprehensible concepts with no concept annotations. ECO-Concept first utilizes an object-centric architecture to extract semantic concepts automatically. Then the comprehensibility of the extracted concepts is evaluated by large language models. Finally, the evaluation result guides the subsequent model fine-tuning to obtain more understandable explanations. Experiments show that our method achieves superior performance across diverse tasks. Further concept evaluations validate that the concepts learned by ECO-Concept surpassed current counterparts in comprehensibility.
Related papers
- OmniPrism: Learning Disentangled Visual Concept for Image Generation [57.21097864811521]
Creative visual concept generation often draws inspiration from specific concepts in a reference image to produce relevant outcomes.<n>We propose OmniPrism, a visual concept disentangling approach for creative image generation.<n>Our method learns disentangled concept representations guided by natural language and trains a diffusion model to incorporate these concepts.
arXiv Detail & Related papers (2024-12-16T18:59:52Z) - Discover-then-Name: Task-Agnostic Concept Bottlenecks via Automated Concept Discovery [52.498055901649025]
Concept Bottleneck Models (CBMs) have been proposed to address the 'black-box' problem of deep neural networks.
We propose a novel CBM approach -- called Discover-then-Name-CBM (DN-CBM) -- that inverts the typical paradigm.
Our concept extraction strategy is efficient, since it is agnostic to the downstream task, and uses concepts already known to the model.
arXiv Detail & Related papers (2024-07-19T17:50:11Z) - Evaluating Readability and Faithfulness of Concept-based Explanations [35.48852504832633]
Concept-based explanations arise as a promising avenue for explaining high-level patterns learned by Large Language Models.
Current methods approach concepts from different perspectives, lacking a unified formalization.
This makes evaluating the core measures of concepts, namely faithfulness or readability, challenging.
arXiv Detail & Related papers (2024-04-29T09:20:25Z) - Concept Induction using LLMs: a user experiment for assessment [1.1982127665424676]
This study explores the potential of a Large Language Model (LLM) to generate high-level concepts that are meaningful as explanations for humans.
We compare the concepts generated by the LLM with two other methods: concepts generated by humans and the ECII concept induction system.
Our findings indicate that while human-generated explanations remain superior, concepts derived from GPT-4 are more comprehensible to humans compared to those generated by ECII.
arXiv Detail & Related papers (2024-04-18T03:22:02Z) - Knowledge graphs for empirical concept retrieval [1.06378109904813]
Concept-based explainable AI is promising as a tool to improve the understanding of complex models at the premises of a given user.
Here, we present a workflow for user-driven data collection in both text and image domains.
We test the retrieved concept datasets on two concept-based explainability methods, namely concept activation vectors (CAVs) and concept activation regions (CARs)
arXiv Detail & Related papers (2024-04-10T13:47:22Z) - A survey on Concept-based Approaches For Model Improvement [2.1516043775965565]
Concepts are known to be the thinking ground of humans.
We provide a systematic review and taxonomy of various concept representations and their discovery algorithms in Deep Neural Networks (DNNs)
We also provide details on concept-based model improvement literature marking the first comprehensive survey of these methods.
arXiv Detail & Related papers (2024-03-21T17:09:20Z) - ConcEPT: Concept-Enhanced Pre-Training for Language Models [57.778895980999124]
ConcEPT aims to infuse conceptual knowledge into pre-trained language models.
It exploits external entity concept prediction to predict the concepts of entities mentioned in the pre-training contexts.
Results of experiments show that ConcEPT gains improved conceptual knowledge with concept-enhanced pre-training.
arXiv Detail & Related papers (2024-01-11T05:05:01Z) - Interpreting Pretrained Language Models via Concept Bottlenecks [55.47515772358389]
Pretrained language models (PLMs) have made significant strides in various natural language processing tasks.
The lack of interpretability due to their black-box'' nature poses challenges for responsible implementation.
We propose a novel approach to interpreting PLMs by employing high-level, meaningful concepts that are easily understandable for humans.
arXiv Detail & Related papers (2023-11-08T20:41:18Z) - Interpretable Neural-Symbolic Concept Reasoning [7.1904050674791185]
Concept-based models aim to address this issue by learning tasks based on a set of human-understandable concepts.
We propose the Deep Concept Reasoner (DCR), the first interpretable concept-based model that builds upon concept embeddings.
arXiv Detail & Related papers (2023-04-27T09:58:15Z) - Concept Gradient: Concept-based Interpretation Without Linear Assumption [77.96338722483226]
Concept Activation Vector (CAV) relies on learning a linear relation between some latent representation of a given model and concepts.
We proposed Concept Gradient (CG), extending concept-based interpretation beyond linear concept functions.
We demonstrated CG outperforms CAV in both toy examples and real world datasets.
arXiv Detail & Related papers (2022-08-31T17:06:46Z) - Human-Centered Concept Explanations for Neural Networks [47.71169918421306]
We introduce concept explanations including the class of Concept Activation Vectors (CAV)
We then discuss approaches to automatically extract concepts, and approaches to address some of their caveats.
Finally, we discuss some case studies that showcase the utility of such concept-based explanations in synthetic settings and real world applications.
arXiv Detail & Related papers (2022-02-25T01:27:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.