Self-reflective Uncertainties: Do LLMs Know Their Internal Answer Distribution?
- URL: http://arxiv.org/abs/2505.20295v2
- Date: Tue, 01 Jul 2025 19:41:58 GMT
- Title: Self-reflective Uncertainties: Do LLMs Know Their Internal Answer Distribution?
- Authors: Michael Kirchhof, Luca Füger, Adam Goliński, Eeshan Gunesh Dhekane, Arno Blaas, Sinead Williamson,
- Abstract summary: SelfReflect is a metric to assess how faithfully a string summarizes an LLM's internal answer distribution.<n>We show that SelfReflect is able to discriminate even subtle differences of candidate summary strings and that it aligns with human judgement.
- Score: 3.9003806149601234
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To reveal when a large language model (LLM) is uncertain about a response, uncertainty quantification commonly produces percentage numbers along with the output. But is this all we can do? We argue that in the output space of LLMs, the space of strings, exist strings expressive enough to summarize the distribution over output strings the LLM deems possible. We lay a foundation for this new avenue of uncertainty explication and present SelfReflect, a theoretically-motivated metric to assess how faithfully a string summarizes an LLM's internal answer distribution. We show that SelfReflect is able to discriminate even subtle differences of candidate summary strings and that it aligns with human judgement, outperforming alternative metrics such as LLM judges and embedding comparisons. With SelfReflect, we investigate a number of self-summarization methods and find that even state-of-the-art reasoning models struggle to explicate their internal uncertainty. But we find that faithful summarizations can be generated by sampling and summarizing. To support the development of this universal form of LLM uncertainties, we publish our metric at https://github.com/apple/ml-selfreflect
Related papers
- Factual Self-Awareness in Language Models: Representation, Robustness, and Scaling [56.26834106704781]
Factual incorrectness in generated content is one of the primary concerns in ubiquitous deployment of large language models (LLMs)<n>We provide evidence supporting the presence of LLMs' internal compass that dictate the correctness of factual recall at the time of generation.<n>Scaling experiments across model sizes and training dynamics highlight that self-awareness emerges rapidly during training and peaks in intermediate layers.
arXiv Detail & Related papers (2025-05-27T16:24:02Z) - DIF: A Framework for Benchmarking and Verifying Implicit Bias in LLMs [1.89915151018241]
We argue that implicit bias in Large Language Models (LLMs) is not only an ethical, but also a technical issue.<n>We developed a method for calculating an easily interpretable benchmark, DIF (Demographic Implicit Fairness)
arXiv Detail & Related papers (2025-05-15T06:53:37Z) - "I know myself better, but not really greatly": How Well Can LLMs Detect and Explain LLM-Generated Texts? [10.454446545249096]
This paper investigates detection and explanation capabilities of current LLMs across two settings: binary (human vs. LLM-generated) and ternary classification (including an undecided'' class)<n>We evaluate 6 close- and open-source LLMs of varying sizes and find that self-detection (LLMs identifying their own outputs) consistently outperforms cross-detection (identifying outputs from other LLMs)<n>Our findings underscore the limitations of current LLMs in self-detection and self-explanation, highlighting the need for further research to address overfitting and enhance generalizability.
arXiv Detail & Related papers (2025-02-18T11:00:28Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
Large language models (LLMs) can reach and even surpass human-level accuracy on a variety of benchmarks, but their overconfidence in incorrect responses is still a well-documented failure mode.
We propose a framework for measuring an LLM's uncertainty with respect to the distribution of generated explanations for an answer.
arXiv Detail & Related papers (2024-06-05T16:35:30Z) - Think Twice Before Trusting: Self-Detection for Large Language Models through Comprehensive Answer Reflection [90.71323430635593]
We propose a novel self-detection paradigm that considers the comprehensive answer space beyond LLM-generated answers.
Building upon this paradigm, we introduce a two-step framework, which firstly instructs LLM to reflect and provide justifications for each candidate answer.
This framework can be seamlessly integrated with existing approaches for superior self-detection.
arXiv Detail & Related papers (2024-03-15T02:38:26Z) - Pride and Prejudice: LLM Amplifies Self-Bias in Self-Refinement [75.7148545929689]
Large language models (LLMs) improve their performance through self-feedback on certain tasks while degrade on others.
We formally define LLM's self-bias - the tendency to favor its own generation.
We analyze six LLMs on translation, constrained text generation, and mathematical reasoning tasks.
arXiv Detail & Related papers (2024-02-18T03:10:39Z) - Self-Contrast: Better Reflection Through Inconsistent Solving Perspectives [45.87069217634753]
Research indicates without external feedback, Large Language Model's intrinsic reflection is unstable.
Our investigation unveils that the key bottleneck is the quality of the self-evaluated feedback.
We advocate Self-Contrast: It adaptively explores diverse solving perspectives tailored to the request, contrasts the differences, and summarizes these discrepancies into a checklist which could be used to re-examine and eliminate discrepancies.
arXiv Detail & Related papers (2024-01-04T00:32:33Z) - Assessing the Reliability of Large Language Model Knowledge [78.38870272050106]
Large language models (LLMs) have been treated as knowledge bases due to their strong performance in knowledge probing tasks.
How do we evaluate the capabilities of LLMs to consistently produce factually correct answers?
We propose MOdel kNowledge relIabiliTy scORe (MONITOR), a novel metric designed to directly measure LLMs' factual reliability.
arXiv Detail & Related papers (2023-10-15T12:40:30Z) - Statistical Knowledge Assessment for Large Language Models [79.07989821512128]
Given varying prompts regarding a factoid question, can a large language model (LLM) reliably generate factually correct answers?
We propose KaRR, a statistical approach to assess factual knowledge for LLMs.
Our results reveal that the knowledge in LLMs with the same backbone architecture adheres to the scaling law, while tuning on instruction-following data sometimes compromises the model's capability to generate factually correct text reliably.
arXiv Detail & Related papers (2023-05-17T18:54:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.