論文の概要: Learning with Expected Signatures: Theory and Applications
- arxiv url: http://arxiv.org/abs/2505.20465v1
- Date: Mon, 26 May 2025 19:01:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-28 17:05:58.264062
- Title: Learning with Expected Signatures: Theory and Applications
- Title(参考訳): 期待されたシグナチャによる学習:理論と応用
- Authors: Lorenzo Lucchese, Mikko S. Pakkanen, Almut E. D. Veraart,
- Abstract要約: 本稿では,期待署名の離散時間推定器と理論的連続時間値とのギャップを橋渡しする。
平均二乗誤差を著しく低減した予測シグネチャ推定器の簡単な修正を提案し、予測性能を向上させるために効果的に適用できることを実証的に示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The expected signature maps a collection of data streams to a lower dimensional representation, with a remarkable property: the resulting feature tensor can fully characterize the data generating distribution. This "model-free" embedding has been successfully leveraged to build multiple domain-agnostic machine learning (ML) algorithms for time series and sequential data. The convergence results proved in this paper bridge the gap between the expected signature's empirical discrete-time estimator and its theoretical continuous-time value, allowing for a more complete probabilistic interpretation of expected signature-based ML methods. Moreover, when the data generating process is a martingale, we suggest a simple modification of the expected signature estimator with significantly lower mean squared error and empirically demonstrate how it can be effectively applied to improve predictive performance.
- Abstract(参考訳): 期待されるシグネチャは、データストリームの集合を低次元の表現にマッピングする。
この"モデルフリー"な埋め込みは、時系列とシーケンシャルデータのための複数のドメインに依存しない機械学習(ML)アルゴリズムを構築するためにうまく活用されている。
本論文では,予測シグネチャの実験的離散時間推定器と理論的連続時間値とのギャップを橋渡しし,期待シグネチャに基づくML手法のより完全な確率論的解釈を可能にした。
さらに,データ生成プロセスがマーチンゲールである場合,平均二乗誤差を著しく低減した予測シグネチャ推定器の簡単な修正を提案し,予測性能の向上に効果的に適用できるかを実証的に示す。
関連論文リスト
- I Predict Therefore I Am: Is Next Token Prediction Enough to Learn Human-Interpretable Concepts from Data? [76.15163242945813]
大規模言語モデル (LLM) は、多くの人が知能の形式を示すと結論づけている。
本稿では,潜在離散変数として表現される人間解釈可能な概念に基づいてトークンを生成する新しい生成モデルを提案する。
論文 参考訳(メタデータ) (2025-03-12T01:21:17Z) - Sub-graph Based Diffusion Model for Link Prediction [43.15741675617231]
拡散確率モデル(Denoising Diffusion Probabilistic Models, DDPM)は、例外的な品質を持つ同時代の生成モデルである。
本研究では,ベイズ式による確率推定過程を分解するために,専用設計を用いたリンク予測のための新しい生成モデルを構築した。
提案手法は,(1)再トレーニングを伴わないデータセット間の転送可能性,(2)限られたトレーニングデータに対する有望な一般化,(3)グラフ敵攻撃に対する堅牢性など,多くの利点を示す。
論文 参考訳(メタデータ) (2024-09-13T02:23:55Z) - Ranking and Combining Latent Structured Predictive Scores without Labeled Data [2.5064967708371553]
本稿では,新しい教師なしアンサンブル学習モデル(SUEL)を提案する。
連続的な予測スコアを持つ予測器のセット間の依存関係を利用して、ラベル付きデータなしで予測器をランク付けし、それらをアンサンブルされたスコアに重み付けする。
提案手法の有効性は、シミュレーション研究とリスク遺伝子発見の現実的応用の両方を通じて厳密に評価されている。
論文 参考訳(メタデータ) (2024-08-14T20:14:42Z) - Sparse Training of Discrete Diffusion Models for Graph Generation [45.103518022696996]
SparseDiffは、ほとんど全ての大きなグラフがスパースであるという観察に基づく、新しい拡散モデルである。
エッジのサブセットを選択することで、SparseDiffは、ノイズ発生過程とノイズ発生ネットワーク内のスパースグラフ表現を効果的に活用する。
本モデルでは,小規模・大規模両方のデータセットにおいて,複数のメトリクスにわたる最先端性能を示す。
論文 参考訳(メタデータ) (2023-11-03T16:50:26Z) - ChiroDiff: Modelling chirographic data with Diffusion Models [132.5223191478268]
チャーログラフィーデータのための強力なモデルクラスである「拡散確率モデル(Denoising Diffusion Probabilistic Models)」やDDPMを導入している。
我々のモデルは「ChiroDiff」と呼ばれ、非自己回帰的であり、全体論的概念を捉えることを学び、したがって高い時間的サンプリングレートに回復する。
論文 参考訳(メタデータ) (2023-04-07T15:17:48Z) - Partial sequence labeling with structured Gaussian Processes [8.239028141030621]
部分列ラベリングのための構造付きガウス過程を提案する。
予測の不確実性を符号化し、モデル選択やハイパーパラメータ学習に余分な労力を要しない。
いくつかのシーケンスラベリングタスクで評価を行い,実験結果から提案手法の有効性が示された。
論文 参考訳(メタデータ) (2022-09-20T00:56:49Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
時間変化量の推定は、医療や金融などの分野における意思決定の基本的な構成要素である。
本稿では,アテンションベースデコーダを用いて関節分布を推定する多元的手法を提案する。
本研究では,本モデルが実世界の複数のデータセットに対して最先端の予測を生成することを示す。
論文 参考訳(メタデータ) (2022-02-07T21:37:29Z) - Remaining Useful Life Estimation Under Uncertainty with Causal GraphNets [0.0]
時系列モデルの構築とトレーニングのための新しいアプローチを提案する。
提案手法は,非定常時系列の予測モデル構築に適している。
論文 参考訳(メタデータ) (2020-11-23T21:28:03Z) - Ambiguity in Sequential Data: Predicting Uncertain Futures with
Recurrent Models [110.82452096672182]
逐次データによる曖昧な予測を扱うために,Multiple hypothesis Prediction(MHP)モデルの拡張を提案する。
また、不確実性を考慮するのに適した曖昧な問題に対する新しい尺度も導入する。
論文 参考訳(メタデータ) (2020-03-10T09:15:42Z) - Semi-Supervised Learning with Normalizing Flows [54.376602201489995]
FlowGMMは、フローの正規化を伴う生成半教師付き学習におけるエンドツーエンドのアプローチである。
我々は AG-News や Yahoo Answers のテキストデータなど,幅広いアプリケーションに対して有望な結果を示す。
論文 参考訳(メタデータ) (2019-12-30T17:36:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。