Learning with Expected Signatures: Theory and Applications
- URL: http://arxiv.org/abs/2505.20465v1
- Date: Mon, 26 May 2025 19:01:20 GMT
- Title: Learning with Expected Signatures: Theory and Applications
- Authors: Lorenzo Lucchese, Mikko S. Pakkanen, Almut E. D. Veraart,
- Abstract summary: This paper bridge the gap between the expected signature's empirical discrete-time estimator and its theoretical continuous-time value.<n>We suggest a simple modification of the expected signature estimator with significantly lower mean squared error and empirically demonstrate how it can be effectively applied to improve predictive performance.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The expected signature maps a collection of data streams to a lower dimensional representation, with a remarkable property: the resulting feature tensor can fully characterize the data generating distribution. This "model-free" embedding has been successfully leveraged to build multiple domain-agnostic machine learning (ML) algorithms for time series and sequential data. The convergence results proved in this paper bridge the gap between the expected signature's empirical discrete-time estimator and its theoretical continuous-time value, allowing for a more complete probabilistic interpretation of expected signature-based ML methods. Moreover, when the data generating process is a martingale, we suggest a simple modification of the expected signature estimator with significantly lower mean squared error and empirically demonstrate how it can be effectively applied to improve predictive performance.
Related papers
- I Predict Therefore I Am: Is Next Token Prediction Enough to Learn Human-Interpretable Concepts from Data? [76.15163242945813]
Large language models (LLMs) have led many to conclude that they exhibit a form of intelligence.<n>We introduce a novel generative model that generates tokens on the basis of human-interpretable concepts represented as latent discrete variables.
arXiv Detail & Related papers (2025-03-12T01:21:17Z) - Sub-graph Based Diffusion Model for Link Prediction [43.15741675617231]
Denoising Diffusion Probabilistic Models (DDPMs) represent a contemporary class of generative models with exceptional qualities.
We build a novel generative model for link prediction using a dedicated design to decompose the likelihood estimation process via the Bayesian formula.
Our proposed method presents numerous advantages: (1) transferability across datasets without retraining, (2) promising generalization on limited training data, and (3) robustness against graph adversarial attacks.
arXiv Detail & Related papers (2024-09-13T02:23:55Z) - Ranking and Combining Latent Structured Predictive Scores without Labeled Data [2.5064967708371553]
This paper introduces a novel structured unsupervised ensemble learning model (SUEL)
It exploits the dependency between a set of predictors with continuous predictive scores, rank the predictors without labeled data and combine them to an ensembled score with weights.
The efficacy of the proposed methods is rigorously assessed through both simulation studies and real-world application of risk genes discovery.
arXiv Detail & Related papers (2024-08-14T20:14:42Z) - Sparse Training of Discrete Diffusion Models for Graph Generation [45.103518022696996]
We introduce SparseDiff, a novel diffusion model based on the observation that almost all large graphs are sparse.
By selecting a subset of edges, SparseDiff effectively leverages sparse graph representations both during the noising process and within the denoising network.
Our model demonstrates state-of-the-art performance across multiple metrics on both small and large datasets.
arXiv Detail & Related papers (2023-11-03T16:50:26Z) - ChiroDiff: Modelling chirographic data with Diffusion Models [132.5223191478268]
We introduce a powerful model-class namely "Denoising Diffusion Probabilistic Models" or DDPMs for chirographic data.
Our model named "ChiroDiff", being non-autoregressive, learns to capture holistic concepts and therefore remains resilient to higher temporal sampling rate.
arXiv Detail & Related papers (2023-04-07T15:17:48Z) - Partial sequence labeling with structured Gaussian Processes [8.239028141030621]
We propose structured Gaussian Processes for partial sequence labeling.
It encodes uncertainty in the prediction and does not need extra effort for model selection and hyper parameter learning.
It is evaluated on several sequence labeling tasks and the experimental results show the effectiveness of the proposed model.
arXiv Detail & Related papers (2022-09-20T00:56:49Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
estimation of time-varying quantities is a fundamental component of decision making in fields such as healthcare and finance.
We propose a versatile method that estimates joint distributions using an attention-based decoder.
We show that our model produces state-of-the-art predictions on several real-world datasets.
arXiv Detail & Related papers (2022-02-07T21:37:29Z) - Remaining Useful Life Estimation Under Uncertainty with Causal GraphNets [0.0]
A novel approach for the construction and training of time series models is presented.
The proposed method is appropriate for constructing predictive models for non-stationary time series.
arXiv Detail & Related papers (2020-11-23T21:28:03Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
We introduce a novel approach to directly optimize a reinforcement learning objective, maximizing an expected reward.
We test our methodology on two tasks: generating molecules with user-defined properties and identifying short python expressions which evaluate to a given target value.
arXiv Detail & Related papers (2020-10-05T20:03:13Z) - Ambiguity in Sequential Data: Predicting Uncertain Futures with
Recurrent Models [110.82452096672182]
We propose an extension of the Multiple Hypothesis Prediction (MHP) model to handle ambiguous predictions with sequential data.
We also introduce a novel metric for ambiguous problems, which is better suited to account for uncertainties.
arXiv Detail & Related papers (2020-03-10T09:15:42Z) - Semi-Supervised Learning with Normalizing Flows [54.376602201489995]
FlowGMM is an end-to-end approach to generative semi supervised learning with normalizing flows.
We show promising results on a wide range of applications, including AG-News and Yahoo Answers text data.
arXiv Detail & Related papers (2019-12-30T17:36:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.