論文の概要: ControlTac: Force- and Position-Controlled Tactile Data Augmentation with a Single Reference Image
- arxiv url: http://arxiv.org/abs/2505.20498v2
- Date: Wed, 28 May 2025 02:10:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-29 12:33:41.759312
- Title: ControlTac: Force- and Position-Controlled Tactile Data Augmentation with a Single Reference Image
- Title(参考訳): ControlTac: 単一の参照画像による力・位置制御された触覚データ拡張
- Authors: Dongyu Luo, Kelin Yu, Amir-Hossein Shahidzadeh, Cornelia Fermüller, Yiannis Aloimonos, Ruohan Gao,
- Abstract要約: ControlTacは、単一の参照触覚画像、接触力、接触位置に条件付けされたリアルな触覚画像を生成する、制御可能なフレームワークである。
ControlTacは、触覚データセットを効果的に拡張し、一貫したゲインにつながることを実証します。
- 参考スコア(独自算出の注目度): 24.223013595239916
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vision-based tactile sensing has been widely used in perception, reconstruction, and robotic manipulation. However, collecting large-scale tactile data remains costly due to the localized nature of sensor-object interactions and inconsistencies across sensor instances. Existing approaches to scaling tactile data, such as simulation and free-form tactile generation, often suffer from unrealistic output and poor transferability to downstream tasks. To address this, we propose ControlTac, a two-stage controllable framework that generates realistic tactile images conditioned on a single reference tactile image, contact force, and contact position. With those physical priors as control input, ControlTac generates physically plausible and varied tactile images that can be used for effective data augmentation. Through experiments on three downstream tasks, we demonstrate that ControlTac can effectively augment tactile datasets and lead to consistent gains. Our three real-world experiments further validate the practical utility of our approach. Project page: https://dongyuluo.github.io/controltac.
- Abstract(参考訳): 視覚に基づく触覚センシングは知覚、再構築、ロボット操作に広く用いられている。
しかし、センサー・オブジェクト間相互作用の局所的性質とセンサインスタンス間の不整合のため、大規模な触覚データ収集はコストがかかるままである。
シミュレーションやフリーフォームの触覚生成など、既存の触覚データをスケールするためのアプローチは、しばしば非現実的な出力と下流タスクへの転送性に悩まされる。
そこで本研究では,単一の基準触覚画像,接触力,接触位置を条件とした現実的な触覚画像を生成する2段階制御可能なフレームワークであるControlTacを提案する。
これらの物理的事前を制御入力として、ControlTacは、効果的なデータ拡張に使用できる物理的に可塑性で多様な触覚画像を生成する。
3つの下流タスクの実験を通じて、ControlTacが触覚データセットを効果的に拡張し、一貫したゲインをもたらすことを実証した。
私たちの3つの実世界の実験は、我々のアプローチの実用性をさらに検証します。
プロジェクトページ: https://dongyuluo.github.io/controltac.com
関連論文リスト
- Towards Generalization of Tactile Image Generation: Reference-Free Evaluation in a Leakage-Free Setting [25.355424080824996]
触覚は人間の知覚に重要であり、コンピュータビジョン、ロボティクス、マルチモーダル学習の応用を支えている。
触覚データは入手が困難でコストがかかることが多いため、合成触覚画像の生成は、実世界の測定を拡大するためのスケーラブルなソリューションを提供する。
一般的なデータセットにおける重なり合うトレーニングとテストサンプルは、パフォーマンス指標を増大させ、触覚モデルの真の一般化可能性を見極めることを実証する。
論文 参考訳(メタデータ) (2025-03-10T02:37:22Z) - Multimodal and Force-Matched Imitation Learning with a See-Through Visuotactile Sensor [14.492202828369127]
我々は、模倣学習(IL)の枠組みの中でマルチモーダル・ビゾタクタクタブル・センサを活用して、コンタクトリッチなタスクを実行する。
本稿では,IL改善のための補完手法として,触覚力マッチングと学習モード切替という2つのアルゴリズム的貢献を紹介する。
以上の結果から, 力の一致が平均政策成功率62.5%, ビズオタクタクタクタクタクタクタクタクタクタクタクタクタクタクタクタクタクタクタクタクタクタクタクタクタクタクタクタクタクタクタクタクタクタクタクタクタクタクタクタクタクタクタクタクタクタクタクタクタクタクタクタクタクタクタクタクタクタクタクタクタクタクタクタク
論文 参考訳(メタデータ) (2023-11-02T14:02:42Z) - Controllable Visual-Tactile Synthesis [28.03469909285511]
一つのスケッチから視覚と触覚の両方の出力を合成する条件生成モデルを開発した。
次に,電気接着型触覚デバイスに高品質な視覚・触覚出力を描画するパイプラインを導入する。
論文 参考訳(メタデータ) (2023-05-04T17:59:51Z) - Tactile-Filter: Interactive Tactile Perception for Part Mating [54.46221808805662]
人間は触覚と触覚に頼っている。
視覚ベースの触覚センサーは、様々なロボット認識や制御タスクに広く利用されている。
本稿では,視覚に基づく触覚センサを用いた対話的知覚手法を提案する。
論文 参考訳(メタデータ) (2023-03-10T16:27:37Z) - Visual-Tactile Multimodality for Following Deformable Linear Objects
Using Reinforcement Learning [15.758583731036007]
本稿では,視覚と触覚入力を併用して変形可能な線形物体を追従するタスクを完遂する問題について検討する。
我々は,異なる感覚モーダルを用いた強化学習エージェントを作成し,その動作をどのように促進するかを検討する。
実験の結果,視覚入力と触覚入力の両方を使用することで,最大92%の症例で作業が完了することがわかった。
論文 参考訳(メタデータ) (2022-03-31T21:59:08Z) - Elastic Tactile Simulation Towards Tactile-Visual Perception [58.44106915440858]
触覚シミュレーションのための粒子の弾性相互作用(EIP)を提案する。
EIPは、触覚センサを協調粒子群としてモデル化し、接触時の粒子の変形を制御するために弾性特性を適用した。
さらに,触覚データと視覚画像間の情報融合を可能にする触覚知覚ネットワークを提案する。
論文 参考訳(メタデータ) (2021-08-11T03:49:59Z) - Active 3D Shape Reconstruction from Vision and Touch [66.08432412497443]
人間は、視覚と触覚を共同で利用して、活発な物体探索を通じて世界の3D理解を構築する。
3次元形状の再構成では、最新の進歩はRGB画像、深度マップ、触覚読影などの限られた感覚データの静的データセットに依存している。
1)高空間分解能視覚に基づく触覚センサを応用した3次元物体のアクティブタッチに活用した触覚シミュレータ,2)触覚やビジュオクティビティルを先導するメッシュベースの3次元形状再構成モデル,3)触覚やビジュオのいずれかを用いたデータ駆動型ソリューションのセットからなるシステムを導入する。
論文 参考訳(メタデータ) (2021-07-20T15:56:52Z) - OmniTact: A Multi-Directional High Resolution Touch Sensor [109.28703530853542]
既存の触覚センサーは、平らで、感度が小さいか、低解像度の信号のみを提供する。
我々は,多方向高解像度触覚センサOmniTactを紹介する。
我々は,ロボット制御の課題に対して,OmniTactの能力を評価する。
論文 参考訳(メタデータ) (2020-03-16T01:31:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。