論文の概要: Contrastive Desensitization Learning for Cross Domain Face Forgery Detection
- arxiv url: http://arxiv.org/abs/2505.20675v1
- Date: Tue, 27 May 2025 03:49:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-28 17:05:58.387279
- Title: Contrastive Desensitization Learning for Cross Domain Face Forgery Detection
- Title(参考訳): クロスドメイン顔偽造検出のためのコントラスト脱感作学習
- Authors: Lingyu Qiu, Ke Jiang, Xiaoyang Tan,
- Abstract要約: 本稿では,異なる,おそらくは見えない偽造法に敏感な新しいクロスドメイン顔偽造検出法を提案する。
提案手法は,いくつかの最先端手法と比較して検出精度が向上し,誤報率を大幅に低減する。
- 参考スコア(独自算出の注目度): 13.327130030147565
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a new cross-domain face forgery detection method that is insensitive to different and possibly unseen forgery methods while ensuring an acceptable low false positive rate. Although existing face forgery detection methods are applicable to multiple domains to some degree, they often come with a high false positive rate, which can greatly disrupt the usability of the system. To address this issue, we propose an Contrastive Desensitization Network (CDN) based on a robust desensitization algorithm, which captures the essential domain characteristics through learning them from domain transformation over pairs of genuine face images. One advantage of CDN lies in that the learnt face representation is theoretical justified with regard to the its robustness against the domain changes. Extensive experiments over large-scale benchmark datasets demonstrate that our method achieves a much lower false alarm rate with improved detection accuracy compared to several state-of-the-art methods.
- Abstract(参考訳): 本稿では,異なる,おそらくは見えない偽造法に敏感な新しいクロスドメイン顔偽造検出法を提案する。
既存の顔偽造検出法は、ある程度は複数のドメインに適用できるが、しばしば偽陽性率が高く、システムのユーザビリティを著しく損なう可能性がある。
この問題に対処するため,本研究では,真の顔画像のペアによるドメイン変換から,ドメイン特性を学習することにより,頑健なデセンシタイズアルゴリズムに基づくコントラシブ・デセンシタイズ・ネットワーク(CDN)を提案する。
CDNの利点の1つは、学習した顔表現が領域変化に対する堅牢性に関して理論的に正当化されていることである。
大規模ベンチマークデータセットに対する大規模な実験により,本手法はいくつかの最先端手法と比較して検出精度が向上し,はるかに低い誤報率が得られることが示された。
関連論文リスト
- Detecting Adversarial Attacks in Semantic Segmentation via Uncertainty Estimation: A Deep Analysis [12.133306321357999]
セグメンテーションのためのニューラルネットワークに対する敵攻撃を検出する不確実性に基づく手法を提案する。
我々は,不確実性に基づく敵攻撃の検出と様々な最先端ニューラルネットワークの詳細な解析を行う。
提案手法の有効性を示す数値実験を行った。
論文 参考訳(メタデータ) (2024-08-19T14:13:30Z) - UniForensics: Face Forgery Detection via General Facial Representation [60.5421627990707]
高レベルの意味的特徴は摂動の影響を受けにくく、フォージェリー固有の人工物に限らないため、より強い一般化がある。
我々は、トランスフォーマーベースのビデオネットワークを活用する新しいディープフェイク検出フレームワークUniForensicsを導入し、顔の豊かな表現のためのメタファンクショナルな顔分類を行う。
論文 参考訳(メタデータ) (2024-07-26T20:51:54Z) - Masked Gamma-SSL: Learning Uncertainty Estimation via Masked Image
Modeling [19.000718685399935]
本研究では,単一の前方通過で高品質な不確実性推定を行うセマンティックセグメンテーションネットワークを提案する。
我々は、Masked Image Modeling (MIM) アプローチにより、基礎モデルと非ラベルデータセットの一般的な表現を利用する。
安全クリティカルなアプリケーションで使用されるニューラルネットワークでは、トレーニングデータのバイアスがエラーにつながる可能性がある。
論文 参考訳(メタデータ) (2024-02-27T15:49:54Z) - MMNet: Multi-Collaboration and Multi-Supervision Network for Sequential
Deepfake Detection [81.59191603867586]
シークエンシャルディープフェイク検出は、回復のための正しいシーケンスで偽の顔領域を特定することを目的としている。
偽画像の復元には、逆変換を実装するための操作モデルの知識が必要である。
顔画像の空間スケールや逐次順列化を扱うマルチコラボレーション・マルチスーパービジョンネットワーク(MMNet)を提案する。
論文 参考訳(メタデータ) (2023-07-06T02:32:08Z) - Cyclically Disentangled Feature Translation for Face Anti-spoofing [61.70377630461084]
循環不整合特徴変換ネットワーク(CDFTN)と呼ばれる新しい領域適応手法を提案する。
CDFTNは、(1)ソースドメイン不変の生長特徴と2)ドメイン固有のコンテンツ特徴とを持つ擬似ラベル付きサンプルを生成する。
ソースドメインラベルの監督の下で、合成擬似ラベル付き画像に基づいてロバスト分類器を訓練する。
論文 参考訳(メタデータ) (2022-12-07T14:12:34Z) - Few-shot Forgery Detection via Guided Adversarial Interpolation [56.59499187594308]
既存の偽造検出手法は、見知らぬ新しい偽造手法に適用した場合、大幅な性能低下に悩まされる。
本稿では,数発の偽造検出問題を克服するために,GAI(Guid Adversarial Interpolation)を提案する。
我々の手法は、多数派と少数派の偽造アプローチの選択に対して堅牢であることが検証されている。
論文 参考訳(メタデータ) (2022-04-12T16:05:10Z) - Diverse Gaussian Noise Consistency Regularization for Robustness and
Uncertainty Calibration [7.310043452300738]
深層ニューラルネットワークは、列車と試験分布が一致したときに高い予測精度を達成する。
この設定から逸脱し、深刻なパフォーマンス劣化を引き起こす、さまざまな種類の汚職が発生する。
本稿では,画像分類器の多種多様な汚損下での堅牢性向上のための多種多様なガウス雑音整合正則化法を提案する。
論文 参考訳(メタデータ) (2021-04-02T20:25:53Z) - Cross-Domain Similarity Learning for Face Recognition in Unseen Domains [90.35908506994365]
本研究では,cdt(cross-domain triplet, クロスドメイントリプレット)の損失を推測する新しいクロスドメインメトリック学習損失法を提案する。
CDT損失は、一つのドメインからコンパクトな特徴クラスタを強制することによって意味論的に意味のある特徴の学習を促進する。
本手法では,トレーニング中,注意深いハードペアサンプルマイニングおよびフィルタリング戦略は必要としない。
論文 参考訳(メタデータ) (2021-03-12T19:48:01Z) - Cross-domain Object Detection through Coarse-to-Fine Feature Adaptation [62.29076080124199]
本稿では,クロスドメインオブジェクト検出のための特徴適応手法を提案する。
粗粒度では、アテンション機構を採用して前景領域を抽出し、その辺縁分布に応じて整列する。
粒度の細かい段階では、同じカテゴリのグローバルプロトタイプと異なるドメインとの距離を最小化することにより、前景の条件分布アライメントを行う。
論文 参考訳(メタデータ) (2020-03-23T13:40:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。