Interactive OT Gym: A Reinforcement Learning-Based Interactive Optical tweezer (OT)-Driven Microrobotics Simulation Platform
- URL: http://arxiv.org/abs/2505.20751v2
- Date: Fri, 30 May 2025 11:45:21 GMT
- Title: Interactive OT Gym: A Reinforcement Learning-Based Interactive Optical tweezer (OT)-Driven Microrobotics Simulation Platform
- Authors: Zongcai Tan, Dandan Zhang,
- Abstract summary: Interactive OT Gym is a reinforcement learning (RL)-based simulation platform designed for OT-driven microrobotics.<n>Our platform supports complex physical field simulations and integrates haptic feedback interfaces, RL modules, and context-aware shared control strategies.<n>With its high fidelity, interactivity, low cost, and high-speed simulation capabilities, Interactive OT Gym serves as a user-friendly training and testing environment.
- Score: 2.8878780831391366
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Optical tweezers (OT) offer unparalleled capabilities for micromanipulation with submicron precision in biomedical applications. However, controlling conventional multi-trap OT to achieve cooperative manipulation of multiple complex-shaped microrobots in dynamic environments poses a significant challenge. To address this, we introduce Interactive OT Gym, a reinforcement learning (RL)-based simulation platform designed for OT-driven microrobotics. Our platform supports complex physical field simulations and integrates haptic feedback interfaces, RL modules, and context-aware shared control strategies tailored for OT-driven microrobot in cooperative biological object manipulation tasks. This integration allows for an adaptive blend of manual and autonomous control, enabling seamless transitions between human input and autonomous operation. We evaluated the effectiveness of our platform using a cell manipulation task. Experimental results show that our shared control system significantly improves micromanipulation performance, reducing task completion time by approximately 67% compared to using pure human or RL control alone and achieving a 100% success rate. With its high fidelity, interactivity, low cost, and high-speed simulation capabilities, Interactive OT Gym serves as a user-friendly training and testing environment for the development of advanced interactive OT-driven micromanipulation systems and control algorithms. For more details on the project, please see our website https://sites.google.com/view/otgym
Related papers
- BioMARS: A Multi-Agent Robotic System for Autonomous Biological Experiments [8.317138109309967]
Large language models (LLMs) and vision-language models (VLMs) have the potential to transform biological research by enabling autonomous experimentation.<n>Here we introduce BioMARS, an intelligent platform that integrates LLMs, VLMs, and modular robotics to autonomously design, plan, and execute biological experiments.<n>A web interface enables real-time human-AI collaboration, while a modular backend allows scalable integration with laboratory hardware.
arXiv Detail & Related papers (2025-07-02T08:47:02Z) - Taccel: Scaling Up Vision-based Tactile Robotics via High-performance GPU Simulation [50.34179054785646]
We present Taccel, a high-performance simulation platform that integrates IPC and ABD to model robots, tactile sensors, and objects with both accuracy and unprecedented speed.<n>Taccel provides precise physics simulation and realistic tactile signals while supporting flexible robot-sensor configurations through user-friendly APIs.<n>These capabilities position Taccel as a powerful tool for scaling up tactile robotics research and development.
arXiv Detail & Related papers (2025-04-17T12:57:11Z) - Human-Agent Joint Learning for Efficient Robot Manipulation Skill Acquisition [48.65867987106428]
We introduce a novel system for joint learning between human operators and robots.
It enables human operators to share control of a robot end-effector with a learned assistive agent.
It reduces the need for human adaptation while ensuring the collected data is of sufficient quality for downstream tasks.
arXiv Detail & Related papers (2024-06-29T03:37:29Z) - LPAC: Learnable Perception-Action-Communication Loops with Applications
to Coverage Control [80.86089324742024]
We propose a learnable Perception-Action-Communication (LPAC) architecture for the problem.
CNN processes localized perception; a graph neural network (GNN) facilitates robot communications.
Evaluations show that the LPAC models outperform standard decentralized and centralized coverage control algorithms.
arXiv Detail & Related papers (2024-01-10T00:08:00Z) - MEMTRACK: A Deep Learning-Based Approach to Microrobot Tracking in Dense
and Low-Contrast Environments [4.638136711579875]
Motion Enhanced Multi-level Tracker (MEMTrack) is a robust pipeline for detecting and tracking microrobots.
We trained and validated our model using bacterial micro-motors in collagen (tissue phantom) and tested it in collagen and aqueous media.
MEMTrack can quantify average bacteria speed with no statistically significant difference from the laboriously-produced manual tracking data.
arXiv Detail & Related papers (2023-10-13T23:21:32Z) - Robot Fleet Learning via Policy Merging [58.5086287737653]
We propose FLEET-MERGE to efficiently merge policies in the fleet setting.
We show that FLEET-MERGE consolidates the behavior of policies trained on 50 tasks in the Meta-World environment.
We introduce a novel robotic tool-use benchmark, FLEET-TOOLS, for fleet policy learning in compositional and contact-rich robot manipulation tasks.
arXiv Detail & Related papers (2023-10-02T17:23:51Z) - Combining model-predictive control and predictive reinforcement learning
for stable quadrupedal robot locomotion [0.0]
We study how this can be achieved by a combination of model-predictive and predictive reinforcement learning controllers.
In this work, we combine both control methods to address the quadrupedal robot stable gate generation problem.
arXiv Detail & Related papers (2023-07-15T09:22:37Z) - Navigation of micro-robot swarms for targeted delivery using
reinforcement learning [0.0]
We use the Reinforcement Learning (RL) algorithms Proximal Policy Optimization (PPO) and Robust Policy Optimization (RPO) to navigate a swarm of 4, 9 and 16 microswimmers.
We look at both PPO and RPO performances with limited state information scenarios and also test their robustness for random target location and size.
arXiv Detail & Related papers (2023-06-30T12:17:39Z) - Active Predicting Coding: Brain-Inspired Reinforcement Learning for
Sparse Reward Robotic Control Problems [79.07468367923619]
We propose a backpropagation-free approach to robotic control through the neuro-cognitive computational framework of neural generative coding (NGC)
We design an agent built completely from powerful predictive coding/processing circuits that facilitate dynamic, online learning from sparse rewards.
We show that our proposed ActPC agent performs well in the face of sparse (extrinsic) reward signals and is competitive with or outperforms several powerful backprop-based RL approaches.
arXiv Detail & Related papers (2022-09-19T16:49:32Z) - Model Predictive Control for Fluid Human-to-Robot Handovers [50.72520769938633]
Planning motions that take human comfort into account is not a part of the human-robot handover process.
We propose to generate smooth motions via an efficient model-predictive control framework.
We conduct human-to-robot handover experiments on a diverse set of objects with several users.
arXiv Detail & Related papers (2022-03-31T23:08:20Z) - Smart Magnetic Microrobots Learn to Swim with Deep Reinforcement
Learning [0.0]
Deep reinforcement learning is a promising method of autonomously developing robust controllers for creating smart microrobots.
Here, we report the development of a smart helical magnetic hydrogel microrobot that used the soft actor critic reinforcement learning algorithm to autonomously derive a control policy.
The reinforcement learning agent learned successful control policies with fewer than 100,000 training steps, demonstrating sample efficiency for fast learning.
arXiv Detail & Related papers (2022-01-14T18:42:18Z) - Autonomous object harvesting using synchronized optoelectronic
microrobots [10.860767733334306]
Optoelectronic tweezer-driven microrobots (OETdMs) are a versatile micromanipulation technology.
We describe an approach to automated targeting and path planning to enable open-loop control of multiple microrobots.
arXiv Detail & Related papers (2021-03-08T17:24:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.