Interpretable Credit Default Prediction with Ensemble Learning and SHAP
- URL: http://arxiv.org/abs/2505.20815v1
- Date: Tue, 27 May 2025 07:23:22 GMT
- Title: Interpretable Credit Default Prediction with Ensemble Learning and SHAP
- Authors: Shiqi Yang, Ziyi Huang, Wengran Xiao, Xinyu Shen,
- Abstract summary: This study focuses on the problem of credit default prediction, builds a modeling framework based on machine learning, and conducts comparative experiments on a variety of mainstream classification algorithms.<n>The results show that the ensemble learning method has obvious advantages in predictive performance, especially in dealing with complex nonlinear relationships between features and data imbalance problems.<n>The external credit score variable plays a dominant role in model decision making, which helps to improve the model's interpretability and practical application value.
- Score: 3.948008559977866
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study focuses on the problem of credit default prediction, builds a modeling framework based on machine learning, and conducts comparative experiments on a variety of mainstream classification algorithms. Through preprocessing, feature engineering, and model training of the Home Credit dataset, the performance of multiple models including logistic regression, random forest, XGBoost, LightGBM, etc. in terms of accuracy, precision, and recall is evaluated. The results show that the ensemble learning method has obvious advantages in predictive performance, especially in dealing with complex nonlinear relationships between features and data imbalance problems. It shows strong robustness. At the same time, the SHAP method is used to analyze the importance and dependency of features, and it is found that the external credit score variable plays a dominant role in model decision making, which helps to improve the model's interpretability and practical application value. The research results provide effective reference and technical support for the intelligent development of credit risk control systems.
Related papers
- SHAP-Guided Regularization in Machine Learning Models [1.0515439489916734]
We propose a SHAP-guided regularization framework that incorporates feature importance constraints into model training to enhance both predictive performance and interpretability.<n>Our approach applies entropy-based penalties to encourage sparse, concentrated feature attributions while promoting stability across samples.
arXiv Detail & Related papers (2025-07-31T15:45:38Z) - Efficient Machine Unlearning via Influence Approximation [75.31015485113993]
Influence-based unlearning has emerged as a prominent approach to estimate the impact of individual training samples on model parameters without retraining.<n>This paper establishes a theoretical link between memorizing (incremental learning) and forgetting (unlearning)<n>We introduce the Influence Approximation Unlearning algorithm for efficient machine unlearning from the incremental perspective.
arXiv Detail & Related papers (2025-07-31T05:34:27Z) - From Mathematical Reasoning to Code: Generalization of Process Reward Models in Test-Time Scaling [32.72867198629561]
We investigate the interplay between pre-training and reward model training FLOPs to assess their influence on PRM efficiency and accuracy.<n>Our findings indicate that PRMs trained on mathematical datasets exhibit performance comparable to those tailored for code generation.
arXiv Detail & Related papers (2025-05-24T12:44:15Z) - A Structured Reasoning Framework for Unbalanced Data Classification Using Probabilistic Models [1.6951945839990796]
The paper studies a Markov network model for unbalanced data, aiming to solve the problems of classification bias and insufficient minority class recognition ability.<n>The experimental results show that the Markov network performs well in indicators such as weighted accuracy, F1 score, and AUC-ROC.<n>Future research can focus on efficient model training, structural optimization, and deep learning integration in large-scale unbalanced data environments.
arXiv Detail & Related papers (2025-02-05T17:20:47Z) - Leveraging Convolutional Neural Network-Transformer Synergy for Predictive Modeling in Risk-Based Applications [5.914777314371152]
This paper proposes a deep learning model based on the combination of convolutional neural networks (CNN) and Transformer for credit user default prediction.<n>The results show that the CNN+Transformer model outperforms traditional machine learning models, such as random forests and XGBoost.<n>This study provides a new idea for credit default prediction and provides strong support for risk assessment and intelligent decision-making in the financial field.
arXiv Detail & Related papers (2024-12-24T07:07:14Z) - Self-Improvement in Language Models: The Sharpening Mechanism [70.9248553790022]
We offer a new perspective on the capabilities of self-improvement through a lens we refer to as sharpening.<n>Motivated by the observation that language models are often better at verifying response quality than they are at generating correct responses, we formalize self-improvement as using the model itself as a verifier during post-training.<n>We analyze two natural families of self-improvement algorithms based on SFT and RLHF.
arXiv Detail & Related papers (2024-12-02T20:24:17Z) - Assessing Robustness of Machine Learning Models using Covariate Perturbations [0.6749750044497732]
This paper proposes a comprehensive framework for assessing the robustness of machine learning models.
We explore various perturbation strategies to assess robustness and examine their impact on model predictions.
We demonstrate the effectiveness of our approach in comparing robustness across models, identifying the instabilities in the model, and enhancing model robustness.
arXiv Detail & Related papers (2024-08-02T14:41:36Z) - Revisiting Spurious Correlation in Domain Generalization [12.745076668687748]
We build a structural causal model (SCM) to describe the causality within data generation process.
We further conduct a thorough analysis of the mechanisms underlying spurious correlation.
In this regard, we propose to control confounding bias in OOD generalization by introducing a propensity score weighted estimator.
arXiv Detail & Related papers (2024-06-17T13:22:00Z) - Enhancing Fairness and Performance in Machine Learning Models: A Multi-Task Learning Approach with Monte-Carlo Dropout and Pareto Optimality [1.5498930424110338]
This study introduces an approach to mitigate bias in machine learning by leveraging model uncertainty.
Our approach utilizes a multi-task learning (MTL) framework combined with Monte Carlo (MC) Dropout to assess and mitigate uncertainty in predictions related to protected labels.
arXiv Detail & Related papers (2024-04-12T04:17:50Z) - Robustness and Generalization Performance of Deep Learning Models on
Cyber-Physical Systems: A Comparative Study [71.84852429039881]
Investigation focuses on the models' ability to handle a range of perturbations, such as sensor faults and noise.
We test the generalization and transfer learning capabilities of these models by exposing them to out-of-distribution (OOD) samples.
arXiv Detail & Related papers (2023-06-13T12:43:59Z) - Robust Learning with Progressive Data Expansion Against Spurious
Correlation [65.83104529677234]
We study the learning process of a two-layer nonlinear convolutional neural network in the presence of spurious features.
Our analysis suggests that imbalanced data groups and easily learnable spurious features can lead to the dominance of spurious features during the learning process.
We propose a new training algorithm called PDE that efficiently enhances the model's robustness for a better worst-group performance.
arXiv Detail & Related papers (2023-06-08T05:44:06Z) - On the Robustness of Random Forest Against Untargeted Data Poisoning: An
Ensemble-Based Approach [42.81632484264218]
In machine learning models, perturbations of fractions of the training set (poisoning) can seriously undermine the model accuracy.
This paper aims to implement a novel hash-based ensemble approach that protects random forest against untargeted, random poisoning attacks.
arXiv Detail & Related papers (2022-09-28T11:41:38Z) - How robust are pre-trained models to distribution shift? [82.08946007821184]
We show how spurious correlations affect the performance of popular self-supervised learning (SSL) and auto-encoder based models (AE)
We develop a novel evaluation scheme with the linear head trained on out-of-distribution (OOD) data, to isolate the performance of the pre-trained models from a potential bias of the linear head used for evaluation.
arXiv Detail & Related papers (2022-06-17T16:18:28Z) - Counterfactual Representation Learning with Balancing Weights [74.67296491574318]
Key to causal inference with observational data is achieving balance in predictive features associated with each treatment type.
Recent literature has explored representation learning to achieve this goal.
We develop an algorithm for flexible, scalable and accurate estimation of causal effects.
arXiv Detail & Related papers (2020-10-23T19:06:03Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILE is a novel feature importance estimation method.
We show significant improvements over state-of-the-art approaches, both in terms of fidelity and robustness.
arXiv Detail & Related papers (2020-09-30T05:29:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.