From Mathematical Reasoning to Code: Generalization of Process Reward Models in Test-Time Scaling
- URL: http://arxiv.org/abs/2506.00027v1
- Date: Sat, 24 May 2025 12:44:15 GMT
- Title: From Mathematical Reasoning to Code: Generalization of Process Reward Models in Test-Time Scaling
- Authors: Zhengyu Chen, Yudong Wang, Teng Xiao, Ruochen Zhou, Xuesheng Yang, Wei Wang, Zhifang Sui, Jingang Wang,
- Abstract summary: We investigate the interplay between pre-training and reward model training FLOPs to assess their influence on PRM efficiency and accuracy.<n>Our findings indicate that PRMs trained on mathematical datasets exhibit performance comparable to those tailored for code generation.
- Score: 32.72867198629561
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in improving the reasoning capabilities of Large Language Models have underscored the efficacy of Process Reward Models (PRMs) in addressing intermediate errors through structured feedback mechanisms. This study analyzes PRMs from multiple perspectives, including training methodologies, scalability, and generalization capabilities. We investigate the interplay between pre-training and reward model training FLOPs to assess their influence on PRM efficiency and accuracy in complex reasoning tasks. Our analysis reveals a pattern of diminishing returns in performance with increasing PRM scale, highlighting the importance of balancing model size and computational cost. Furthermore, the diversity of training datasets significantly impacts PRM performance, emphasizing the importance of diverse data to enhance both accuracy and efficiency. We further examine test-time scaling strategies, identifying Monte Carlo Tree Search as the most effective method when computational resources are abundant, while Best-of-N Sampling serves as a practical alternative under resource-limited conditions. Notably, our findings indicate that PRMs trained on mathematical datasets exhibit performance comparable to those tailored for code generation, suggesting robust cross-domain generalization. Employing a gradient-based metric, we observe that PRMs exhibit a preference for selecting responses with similar underlying patterns, further informing their optimization.
Related papers
- Discriminative Policy Optimization for Token-Level Reward Models [55.98642069903191]
Process reward models (PRMs) provide more nuanced supervision compared to outcome reward models (ORMs)<n>Q-RM explicitly learns token-level Q-functions from preference data without relying on fine-grained annotations.<n>Reinforcement learning with Q-RM significantly enhances training efficiency, achieving convergence 12 times faster than ORM on GSM8K and 11 times faster than step-level PRM on MATH.
arXiv Detail & Related papers (2025-05-29T11:40:34Z) - Interpretable Credit Default Prediction with Ensemble Learning and SHAP [3.948008559977866]
This study focuses on the problem of credit default prediction, builds a modeling framework based on machine learning, and conducts comparative experiments on a variety of mainstream classification algorithms.<n>The results show that the ensemble learning method has obvious advantages in predictive performance, especially in dealing with complex nonlinear relationships between features and data imbalance problems.<n>The external credit score variable plays a dominant role in model decision making, which helps to improve the model's interpretability and practical application value.
arXiv Detail & Related papers (2025-05-27T07:23:22Z) - Retrieval-Augmented Process Reward Model for Generalizable Mathematical Reasoning [32.850036320802474]
We introduce Retrieval-Augmented Process Reward Model (RetrievalPRM), a novel framework designed to tackle OOD issues.<n>By utilizing a two-stage retrieval-enhanced mechanism, RetrievalPRM retrieves semantically similar questions and steps as a warmup.<n>Our experiments demonstrate that RetrievalPRM outperforms existing baselines across multiple real-world datasets.
arXiv Detail & Related papers (2025-02-20T08:40:09Z) - Efficient Multi-Agent System Training with Data Influence-Oriented Tree Search [59.75749613951193]
We propose Data Influence-oriented Tree Search (DITS) to guide both tree search and data selection.<n>By leveraging influence scores, we effectively identify the most impactful data for system improvement.<n>We derive influence score estimation methods tailored for non-differentiable metrics.
arXiv Detail & Related papers (2025-02-02T23:20:16Z) - The Lessons of Developing Process Reward Models in Mathematical Reasoning [62.165534879284735]
Process Reward Models (PRMs) aim to identify and mitigate intermediate errors in the reasoning processes.<n>We develop a consensus filtering mechanism that effectively integrates Monte Carlo (MC) estimation with Large Language Models (LLMs)<n>We release a new state-of-the-art PRM that outperforms existing open-source alternatives.
arXiv Detail & Related papers (2025-01-13T13:10:16Z) - Process Reward Model with Q-Value Rankings [18.907163177605607]
Process Reward Modeling (PRM) is critical for complex reasoning and decision-making tasks.<n>We introduce the Process Q-value Model (PQM), a novel framework that redefines PRM in the context of a Markov Decision Process.<n>PQM optimize Q-value rankings based on a novel comparative loss function, enhancing the model's ability to capture the intricate dynamics among sequential decisions.
arXiv Detail & Related papers (2024-10-15T05:10:34Z) - Monte Carlo Tree Search Boosts Reasoning via Iterative Preference Learning [55.96599486604344]
We introduce an approach aimed at enhancing the reasoning capabilities of Large Language Models (LLMs) through an iterative preference learning process.
We use Monte Carlo Tree Search (MCTS) to iteratively collect preference data, utilizing its look-ahead ability to break down instance-level rewards into more granular step-level signals.
The proposed algorithm employs Direct Preference Optimization (DPO) to update the LLM policy using this newly generated step-level preference data.
arXiv Detail & Related papers (2024-05-01T11:10:24Z) - Prior Constraints-based Reward Model Training for Aligning Large Language Models [58.33118716810208]
This paper proposes a Prior Constraints-based Reward Model (namely PCRM) training method to mitigate this problem.
PCRM incorporates prior constraints, specifically, length ratio and cosine similarity between outputs of each comparison pair, during reward model training to regulate optimization magnitude and control score margins.
Experimental results demonstrate that PCRM significantly improves alignment performance by effectively constraining reward score scaling.
arXiv Detail & Related papers (2024-04-01T07:49:11Z) - Let's reward step by step: Step-Level reward model as the Navigators for
Reasoning [64.27898739929734]
Process-Supervised Reward Model (PRM) furnishes LLMs with step-by-step feedback during the training phase.
We propose a greedy search algorithm that employs the step-level feedback from PRM to optimize the reasoning pathways explored by LLMs.
To explore the versatility of our approach, we develop a novel method to automatically generate step-level reward dataset for coding tasks and observed similar improved performance in the code generation tasks.
arXiv Detail & Related papers (2023-10-16T05:21:50Z) - On Effective Scheduling of Model-based Reinforcement Learning [53.027698625496015]
We propose a framework named AutoMBPO to automatically schedule the real data ratio.
In this paper, we first theoretically analyze the role of real data in policy training, which suggests that gradually increasing the ratio of real data yields better performance.
arXiv Detail & Related papers (2021-11-16T15:24:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.