Rethinking Information Synthesis in Multimodal Question Answering A Multi-Agent Perspective
- URL: http://arxiv.org/abs/2505.20816v1
- Date: Tue, 27 May 2025 07:23:38 GMT
- Title: Rethinking Information Synthesis in Multimodal Question Answering A Multi-Agent Perspective
- Authors: Krishna Singh Rajput, Tejas Anvekar, Chitta Baral, Vivek Gupta,
- Abstract summary: We propose MAMMQA, a multi-agent QA framework for multimodal inputs spanning text, tables, and images.<n>Our system includes two Visual Language Model (VLM) agents and one text-based Large Language Model (LLM) agent.<n> Experiments on diverse multimodal QA benchmarks demonstrate that our cooperative, multi-agent framework consistently outperforms existing baselines in both accuracy and robustness.
- Score: 42.832839189236694
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Recent advances in multimodal question answering have primarily focused on combining heterogeneous modalities or fine-tuning multimodal large language models. While these approaches have shown strong performance, they often rely on a single, generalized reasoning strategy, overlooking the unique characteristics of each modality ultimately limiting both accuracy and interpretability. To address these limitations, we propose MAMMQA, a multi-agent QA framework for multimodal inputs spanning text, tables, and images. Our system includes two Visual Language Model (VLM) agents and one text-based Large Language Model (LLM) agent. The first VLM decomposes the user query into sub-questions and sequentially retrieves partial answers from each modality. The second VLM synthesizes and refines these results through cross-modal reasoning. Finally, the LLM integrates the insights into a cohesive answer. This modular design enhances interpretability by making the reasoning process transparent and allows each agent to operate within its domain of expertise. Experiments on diverse multimodal QA benchmarks demonstrate that our cooperative, multi-agent framework consistently outperforms existing baselines in both accuracy and robustness.
Related papers
- MEXA: Towards General Multimodal Reasoning with Dynamic Multi-Expert Aggregation [64.85885900375483]
MEXA is a training-free framework that performs modality- and task-aware aggregation of expert models.<n>We evaluate our approach on diverse multimodal benchmarks, including Video Reasoning, Audio Reasoning, 3D Understanding, and Medical QA.
arXiv Detail & Related papers (2025-06-20T16:14:13Z) - VLMT: Vision-Language Multimodal Transformer for Multimodal Multi-hop Question Answering [8.21219588747224]
This paper introduces Vision-Language Multimodal Transformer (VLMT), a unified architecture that integrates a vision encoder with a sequence-to-sequence language model.<n>VLMT employs a direct token-level injection mechanism to fuse visual and textual inputs within a shared embedding space.<n> Comprehensive experiments on two benchmark datasets demonstrate the effectiveness of the proposed approach.
arXiv Detail & Related papers (2025-04-11T05:51:44Z) - Benchmarking Retrieval-Augmented Generation in Multi-Modal Contexts [56.30364248231053]
This paper introduces Multi-Modal Retrieval-Augmented Generation (M2RAG)<n>M2RAG is a benchmark designed to evaluate the effectiveness of Multi-modal Large Language Models (MLLMs)<n>To enhance the context utilization capabilities of MLLMs, we also introduce Multi-Modal Retrieval-Augmented Instruction Tuning (MM-RAIT)
arXiv Detail & Related papers (2025-02-24T16:25:25Z) - Progressive Multimodal Reasoning via Active Retrieval [64.74746997923967]
Multi-step multimodal reasoning tasks pose significant challenges for large language models (MLLMs)<n>We propose AR-MCTS, a universal framework designed to progressively improve the reasoning capabilities of MLLMs.<n>We show that AR-MCTS can optimize sampling diversity and accuracy, yielding reliable multimodal reasoning.
arXiv Detail & Related papers (2024-12-19T13:25:39Z) - Visual Reasoning and Multi-Agent Approach in Multimodal Large Language Models (MLLMs): Solving TSP and mTSP Combinatorial Challenges [5.934258790280767]
Multimodal Large Language Models (MLLMs) harness comprehensive knowledge spanning text, images, and audio to adeptly tackle complex problems.
This study explores the ability of MLLMs in visually solving the Traveling Salesman Problem (TSP) and Multiple Traveling Salesman Problem (mTSP)
We introduce a novel approach employing multiple specialized agents within the MLLM framework, each dedicated to optimizing solutions for these challenges.
arXiv Detail & Related papers (2024-06-26T07:12:06Z) - Needle In A Multimodal Haystack [79.81804334634408]
We present the first benchmark specifically designed to evaluate the capability of existing MLLMs to comprehend long multimodal documents.
Our benchmark includes three types of evaluation tasks: multimodal retrieval, counting, and reasoning.
We observe that existing models still have significant room for improvement on these tasks, especially on vision-centric evaluation.
arXiv Detail & Related papers (2024-06-11T13:09:16Z) - MM-BigBench: Evaluating Multimodal Models on Multimodal Content
Comprehension Tasks [56.60050181186531]
We introduce MM-BigBench, which incorporates a diverse range of metrics to offer an extensive evaluation of the performance of various models and instructions.
Our paper evaluates a total of 20 language models (14 MLLMs) on 14 multimodal datasets spanning 6 tasks, with 10 instructions for each task, and derives novel insights.
arXiv Detail & Related papers (2023-10-13T11:57:04Z) - Towards Robust Multi-Modal Reasoning via Model Selection [7.6621866737827045]
LLM serves as the "brain" of the agent, orchestrating multiple tools for collaborative multi-step task solving.
We propose the $textitM3$ framework as a plug-in with negligible runtime overhead at test-time.
Our experiments reveal that our framework enables dynamic model selection, considering both user inputs and subtask dependencies.
arXiv Detail & Related papers (2023-10-12T16:06:18Z) - On the Performance of Multimodal Language Models [4.677125897916577]
This study conducts a comparative analysis of different multimodal instruction tuning approaches.
We reveal key insights for guiding architectural choices when incorporating multimodal capabilities into large language models.
arXiv Detail & Related papers (2023-10-04T23:33:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.