論文の概要: Research Community Perspectives on "Intelligence" and Large Language Models
- arxiv url: http://arxiv.org/abs/2505.20959v1
- Date: Tue, 27 May 2025 09:53:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-28 17:05:58.557301
- Title: Research Community Perspectives on "Intelligence" and Large Language Models
- Title(参考訳): インテリジェンス」と大規模言語モデルに関する研究コミュニティの展望
- Authors: Bertram Højer, Terne Sasha Thorn Jakobsen, Anna Rogers, Stefan Heinrich,
- Abstract要約: 本稿では,研究者の「知性」概念に関する調査結果を紹介する。
コミュニティが最も合意している3つのインテリジェンス基準を特定します。
研究目標として知的システムを開発するのは16.2%に過ぎない。
- 参考スコア(独自算出の注目度): 18.758447625226204
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite the widespread use of ''artificial intelligence'' (AI) framing in Natural Language Processing (NLP) research, it is not clear what researchers mean by ''intelligence''. To that end, we present the results of a survey on the notion of ''intelligence'' among researchers and its role in the research agenda. The survey elicited complete responses from 303 researchers from a variety of fields including NLP, Machine Learning (ML), Cognitive Science, Linguistics, and Neuroscience. We identify 3 criteria of intelligence that the community agrees on the most: generalization, adaptability, & reasoning. Our results suggests that the perception of the current NLP systems as ''intelligent'' is a minority position (29%). Furthermore, only 16.2% of the respondents see developing intelligent systems as a research goal, and these respondents are more likely to consider the current systems intelligent.
- Abstract(参考訳): 自然言語処理(NLP)研究における「人工知能」(AI)フレーミング(AI)の普及にもかかわらず、研究者の「知性」の意味は明らかになっていない。
そこで本研究では,研究者の「知性」概念とその研究課題における役割に関する調査結果を紹介する。
調査では、NLP、機械学習(ML)、認知科学、言語学、神経科学など、さまざまな分野の303人の研究者から完全な回答が得られた。
コミュニティが最も合意している3つのインテリジェンス基準(一般化、適応性、推論)を特定します。
以上の結果から,現在のNLPシステムの「知性」に対する認識は少数派(29%)であることが示唆された。
さらに、研究目標としてインテリジェントシステムを開発する回答者は16.2%に過ぎず、これらの回答者は現在のシステムをインテリジェントにみなす傾向にある。
関連論文リスト
- Evaluating Intelligence via Trial and Error [59.80426744891971]
本研究では,試行錯誤プロセスにおける失敗回数に基づいて知性を評価するためのフレームワークとして,Survival Gameを紹介した。
フェールカウントの期待と分散の両方が有限である場合、新しい課題に対するソリューションを一貫して見つける能力を示す。
我々の結果は、AIシステムは単純なタスクで自律レベルを達成するが、より複雑なタスクではまだまだ遠いことを示している。
論文 参考訳(メタデータ) (2025-02-26T05:59:45Z) - Emergent Language: A Survey and Taxonomy [9.823821010022932]
この論文は、人工知能における創発的言語に関する181の科学論文の包括的なレビューを提供する。
その目的は、この分野に興味のある研究者や熟練した研究者の参考となることである。
論文 参考訳(メタデータ) (2024-09-04T12:22:05Z) - OlympicArena: Benchmarking Multi-discipline Cognitive Reasoning for Superintelligent AI [73.75520820608232]
我々は,11,163のバイリンガル問題を含む,テキストのみとインターリーブされたテキストイメージのモダリティを紹介する。
これらの課題には、7つのフィールドと62の国際オリンピック大会にわたる幅広い規律が含まれており、データ漏洩について厳格に調査されている。
我々の評価によると、GPT-4oのような先進モデルでさえ、複雑な推論とマルチモーダル統合における現在のAI制限を反映して、全体的な精度は39.97%しか達成していない。
論文 参考訳(メタデータ) (2024-06-18T16:20:53Z) - On a Functional Definition of Intelligence [0.0]
合意されたインテリジェンスの定義がなければ、"このシステムはインテリジェントか?
知性(intelligence)とは、哲学、心理学、認知科学の分野である。
我々は、その知性が実際に達成される方法とは異なる、純粋に機能的でブラックボックスな知性の定義について論じる。
論文 参考訳(メタデータ) (2023-12-15T05:46:49Z) - ChatGPT and Beyond: The Generative AI Revolution in Education [0.21756081703275998]
この調査は、2022年11月から2023年7月までに出版された学術文献を調査している。
教育における生成AIモデル、特にChatGPTの役割の進化を照らすことを目的としている。
このレビューの結果は、教育者、研究者、政策立案者に対して、AI技術の学習環境への統合に関する情報的な決定を下すよう促す。
論文 参考訳(メタデータ) (2023-11-26T05:34:22Z) - On the Opportunities of Green Computing: A Survey [80.21955522431168]
人工知能(AI)は数十年にわたり、技術と研究において大きな進歩を遂げてきた。
高いコンピューティングパワーの必要性は、より高い二酸化炭素排出量をもたらし、研究の公正性を損なう。
コンピューティングリソースの課題とAIの環境への影響に取り組むため、グリーンコンピューティングはホットな研究トピックとなっている。
論文 参考訳(メタデータ) (2023-11-01T11:16:41Z) - DeSIQ: Towards an Unbiased, Challenging Benchmark for Social
Intelligence Understanding [60.84356161106069]
複雑な社会的相互作用のビデオ上での複数選択質問のデータセットであるSocial-IQの健全性について検討する。
分析の結果,Social-IQにはある程度のバイアスがあり,適度に強い言語モデルによって活用できることがわかった。
ソーシャルIQに単純な摂動を適用して構築した,新たな挑戦的データセットであるDeSIQを紹介する。
論文 参考訳(メタデータ) (2023-10-24T06:21:34Z) - Forecasting AI Progress: Evidence from a Survey of Machine Learning
Researchers [0.0]
我々は,AIと機械学習(ML)の研究者による,AIの進歩に関する信念に関する大規模な調査の結果を報告する。
AI/MLの研究者たちは総じて、2060年までに人間レベルのマシンインテリジェンスが達成される確率を50%に設定した。
いくつかの短期的なAIマイルストーンの予測は、時間とともに減少し、AIの進歩に対する楽観性を示唆している。
論文 参考訳(メタデータ) (2022-06-08T19:05:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。