Assessing the Use of Face Swapping Methods as Face Anonymizers in Videos
- URL: http://arxiv.org/abs/2505.20985v1
- Date: Tue, 27 May 2025 10:19:11 GMT
- Title: Assessing the Use of Face Swapping Methods as Face Anonymizers in Videos
- Authors: Mustafa İzzet Muştu, Hazım Kemal Ekenel,
- Abstract summary: We find that face swapping can produce consistent facial transitions and effectively hide identities in video data.<n>Results underscore the suitability of face swapping for privacy-preserving video applications and lay the groundwork for future advancements in anonymization focused face-swapping models.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The increasing demand for large-scale visual data, coupled with strict privacy regulations, has driven research into anonymization methods that hide personal identities without seriously degrading data quality. In this paper, we explore the potential of face swapping methods to preserve privacy in video data. Through extensive evaluations focusing on temporal consistency, anonymity strength, and visual fidelity, we find that face swapping techniques can produce consistent facial transitions and effectively hide identities. These results underscore the suitability of face swapping for privacy-preserving video applications and lay the groundwork for future advancements in anonymization focused face-swapping models.
Related papers
- iFADIT: Invertible Face Anonymization via Disentangled Identity Transform [51.123936665445356]
Face anonymization aims to conceal the visual identity of a face to safeguard the individual's privacy.<n>This paper proposes a novel framework named iFADIT, an acronym for Invertible Face Anonymization via Disentangled Identity Transform.
arXiv Detail & Related papers (2025-01-08T10:08:09Z) - Transferable Adversarial Facial Images for Privacy Protection [15.211743719312613]
We present a novel face privacy protection scheme with improved transferability while maintain high visual quality.
We first exploit global adversarial latent search to traverse the latent space of the generative model.
We then introduce a key landmark regularization module to preserve the visual identity information.
arXiv Detail & Related papers (2024-07-18T02:16:11Z) - Privacy-preserving Optics for Enhancing Protection in Face De-identification [60.110274007388135]
We propose a hardware-level face de-identification method to solve this vulnerability.
We also propose an anonymization framework that generates a new face using the privacy-preserving image, face heatmap, and a reference face image from a public dataset as input.
arXiv Detail & Related papers (2024-03-31T19:28:04Z) - Diff-Privacy: Diffusion-based Face Privacy Protection [58.1021066224765]
In this paper, we propose a novel face privacy protection method based on diffusion models, dubbed Diff-Privacy.
Specifically, we train our proposed multi-scale image inversion module (MSI) to obtain a set of SDM format conditional embeddings of the original image.
Based on the conditional embeddings, we design corresponding embedding scheduling strategies and construct different energy functions during the denoising process to achieve anonymization and visual identity information hiding.
arXiv Detail & Related papers (2023-09-11T09:26:07Z) - GANonymization: A GAN-based Face Anonymization Framework for Preserving
Emotional Expressions [43.017036538109274]
GANonymization is a novel face anonymization framework with facial expression-preserving abilities.
Our approach is based on a high-level representation of a face, which is synthesized into an anonymized version based on a generative adversarial network (GAN)
arXiv Detail & Related papers (2023-05-03T14:22:48Z) - OPOM: Customized Invisible Cloak towards Face Privacy Protection [58.07786010689529]
We investigate the face privacy protection from a technology standpoint based on a new type of customized cloak.
We propose a new method, named one person one mask (OPOM), to generate person-specific (class-wise) universal masks.
The effectiveness of the proposed method is evaluated on both common and celebrity datasets.
arXiv Detail & Related papers (2022-05-24T11:29:37Z) - FaceMAE: Privacy-Preserving Face Recognition via Masked Autoencoders [81.21440457805932]
We propose a novel framework FaceMAE, where the face privacy and recognition performance are considered simultaneously.
randomly masked face images are used to train the reconstruction module in FaceMAE.
We also perform sufficient privacy-preserving face recognition on several public face datasets.
arXiv Detail & Related papers (2022-05-23T07:19:42Z) - Practical Digital Disguises: Leveraging Face Swaps to Protect Patient
Privacy [1.7249222048792818]
Face swapping for privacy protection has emerged as an active area of research.
Our main contribution is a novel end-to-end face swapping pipeline for recorded videos of standardized assessments of autism symptoms in children.
arXiv Detail & Related papers (2022-04-07T16:34:15Z) - IdentityDP: Differential Private Identification Protection for Face
Images [17.33916392050051]
Face de-identification, also known as face anonymization, refers to generating another image with similar appearance and the same background, while the real identity is hidden.
We propose IdentityDP, a face anonymization framework that combines a data-driven deep neural network with a differential privacy mechanism.
Our model can effectively obfuscate the identity-related information of faces, preserve significant visual similarity, and generate high-quality images.
arXiv Detail & Related papers (2021-03-02T14:26:00Z) - Towards Face Encryption by Generating Adversarial Identity Masks [53.82211571716117]
We propose a targeted identity-protection iterative method (TIP-IM) to generate adversarial identity masks.
TIP-IM provides 95%+ protection success rate against various state-of-the-art face recognition models.
arXiv Detail & Related papers (2020-03-15T12:45:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.