Practical Digital Disguises: Leveraging Face Swaps to Protect Patient
Privacy
- URL: http://arxiv.org/abs/2204.03559v1
- Date: Thu, 7 Apr 2022 16:34:15 GMT
- Title: Practical Digital Disguises: Leveraging Face Swaps to Protect Patient
Privacy
- Authors: Ethan Wilson and Frederick Shic and Jenny Skytta and Eakta Jain
- Abstract summary: Face swapping for privacy protection has emerged as an active area of research.
Our main contribution is a novel end-to-end face swapping pipeline for recorded videos of standardized assessments of autism symptoms in children.
- Score: 1.7249222048792818
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With rapid advancements in image generation technology, face swapping for
privacy protection has emerged as an active area of research. The ultimate
benefit is improved access to video datasets, e.g. in healthcare settings.
Recent literature has proposed deep network-based architectures to perform
facial swaps and reported the associated reduction in facial recognition
accuracy. However, there is not much reporting on how well these methods
preserve the types of semantic information needed for the privatized videos to
remain useful for their intended application. Our main contribution is a novel
end-to-end face swapping pipeline for recorded videos of standardized
assessments of autism symptoms in children. Through this design, we are the
first to provide a methodology for assessing the privacy-utility trade-offs for
the face swapping approach to patient privacy protection. Our methodology can
show, for example, that current deep network based face swapping is
bottle-necked by face detection in real world videos, and the extent to which
gaze and expression information is preserved by face swaps relative to baseline
privatization methods such as blurring.
Related papers
- Transferable Adversarial Facial Images for Privacy Protection [15.211743719312613]
We present a novel face privacy protection scheme with improved transferability while maintain high visual quality.
We first exploit global adversarial latent search to traverse the latent space of the generative model.
We then introduce a key landmark regularization module to preserve the visual identity information.
arXiv Detail & Related papers (2024-07-18T02:16:11Z) - Privacy-preserving Optics for Enhancing Protection in Face De-identification [60.110274007388135]
We propose a hardware-level face de-identification method to solve this vulnerability.
We also propose an anonymization framework that generates a new face using the privacy-preserving image, face heatmap, and a reference face image from a public dataset as input.
arXiv Detail & Related papers (2024-03-31T19:28:04Z) - Diff-Privacy: Diffusion-based Face Privacy Protection [58.1021066224765]
In this paper, we propose a novel face privacy protection method based on diffusion models, dubbed Diff-Privacy.
Specifically, we train our proposed multi-scale image inversion module (MSI) to obtain a set of SDM format conditional embeddings of the original image.
Based on the conditional embeddings, we design corresponding embedding scheduling strategies and construct different energy functions during the denoising process to achieve anonymization and visual identity information hiding.
arXiv Detail & Related papers (2023-09-11T09:26:07Z) - Privacy-Preserving Face Recognition Using Random Frequency Components [46.95003101593304]
Face recognition has sparked increasing privacy concerns.
We propose to conceal visual information by pruning human-perceivable low-frequency components.
We distill our findings into a novel privacy-preserving face recognition method, PartialFace.
arXiv Detail & Related papers (2023-08-21T04:31:02Z) - CLIP2Protect: Protecting Facial Privacy using Text-Guided Makeup via
Adversarial Latent Search [10.16904417057085]
Deep learning based face recognition systems can enable unauthorized tracking of users in the digital world.
Existing methods for enhancing privacy fail to generate naturalistic images that can protect facial privacy without compromising user experience.
We propose a novel two-step approach for facial privacy protection that relies on finding adversarial latent codes in the low-dimensional manifold of a pretrained generative model.
arXiv Detail & Related papers (2023-06-16T17:58:15Z) - Privacy-preserving Adversarial Facial Features [31.885215405010687]
We propose an adversarial features-based face privacy protection approach to generate privacy-preserving adversarial features.
We show that AdvFace outperforms the state-of-the-art face privacy-preserving methods in defending against reconstruction attacks.
arXiv Detail & Related papers (2023-05-08T08:52:08Z) - OPOM: Customized Invisible Cloak towards Face Privacy Protection [58.07786010689529]
We investigate the face privacy protection from a technology standpoint based on a new type of customized cloak.
We propose a new method, named one person one mask (OPOM), to generate person-specific (class-wise) universal masks.
The effectiveness of the proposed method is evaluated on both common and celebrity datasets.
arXiv Detail & Related papers (2022-05-24T11:29:37Z) - FaceMAE: Privacy-Preserving Face Recognition via Masked Autoencoders [81.21440457805932]
We propose a novel framework FaceMAE, where the face privacy and recognition performance are considered simultaneously.
randomly masked face images are used to train the reconstruction module in FaceMAE.
We also perform sufficient privacy-preserving face recognition on several public face datasets.
arXiv Detail & Related papers (2022-05-23T07:19:42Z) - Towards Face Encryption by Generating Adversarial Identity Masks [53.82211571716117]
We propose a targeted identity-protection iterative method (TIP-IM) to generate adversarial identity masks.
TIP-IM provides 95%+ protection success rate against various state-of-the-art face recognition models.
arXiv Detail & Related papers (2020-03-15T12:45:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.