Federated Instrumental Variable Analysis via Federated Generalized Method of Moments
- URL: http://arxiv.org/abs/2505.21012v1
- Date: Tue, 27 May 2025 10:46:43 GMT
- Title: Federated Instrumental Variable Analysis via Federated Generalized Method of Moments
- Authors: Geetika, Somya Tyagi, Bapi Chatterjee,
- Abstract summary: We introduce federated instrumental variables analysis (FedIV) via generalized method moments (FedGMM)<n>Key challenge arises in theoretically characterizing the federated local optimality.<n>We show that the federated solution consistently estimates the local moment conditions of every participating client.
- Score: 1.3682156035049038
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Instrumental variables (IV) analysis is an important applied tool for areas such as healthcare and consumer economics. For IV analysis in high-dimensional settings, the Generalized Method of Moments (GMM) using deep neural networks offers an efficient approach. With non-i.i.d. data sourced from scattered decentralized clients, federated learning is a popular paradigm for training the models while promising data privacy. However, to our knowledge, no federated algorithm for either GMM or IV analysis exists to date. In this work, we introduce federated instrumental variables analysis (FedIV) via federated generalized method of moments (FedGMM). We formulate FedGMM as a federated zero-sum game defined by a federated non-convex non-concave minimax optimization problem, which is solved using federated gradient descent ascent (FedGDA) algorithm. One key challenge arises in theoretically characterizing the federated local optimality. To address this, we present properties and existence results of clients' local equilibria via FedGDA limit points. Thereby, we show that the federated solution consistently estimates the local moment conditions of every participating client. The proposed algorithm is backed by extensive experiments to demonstrate the efficacy of our approach.
Related papers
- PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
We propose a.
Federated Anomaly Detection framework named PeFAD with the increasing privacy concerns.
We conduct extensive evaluations on four real datasets, where PeFAD outperforms existing state-of-the-art baselines by up to 28.74%.
arXiv Detail & Related papers (2024-06-04T13:51:08Z) - Leveraging Function Space Aggregation for Federated Learning at Scale [20.866482460590973]
We propose a new algorithm, FedFish, that aggregates local approximations to the functions learned by clients.
We evaluate FedFish on realistic, large-scale cross-device benchmarks.
arXiv Detail & Related papers (2023-11-17T02:37:10Z) - Locally Adaptive Federated Learning [30.19411641685853]
Federated learning is a paradigm of distributed machine learning in which multiple clients coordinate with a central server to learn a model.
Standard federated optimization methods such as Federated Averaging (FedAvg) ensure generalization among the clients.
We propose locally federated learning algorithms, that leverage the local geometric information for each client function.
arXiv Detail & Related papers (2023-07-12T17:02:32Z) - Tackling Computational Heterogeneity in FL: A Few Theoretical Insights [68.8204255655161]
We introduce and analyse a novel aggregation framework that allows for formalizing and tackling computational heterogeneous data.
Proposed aggregation algorithms are extensively analyzed from a theoretical, and an experimental prospective.
arXiv Detail & Related papers (2023-07-12T16:28:21Z) - Momentum Benefits Non-IID Federated Learning Simply and Provably [22.800862422479913]
Federated learning is a powerful paradigm for large-scale machine learning.
FedAvg and SCAFFOLD are two prominent algorithms to address these challenges.
This paper explores the utilization of momentum to enhance the performance of FedAvg and SCAFFOLD.
arXiv Detail & Related papers (2023-06-28T18:52:27Z) - FedSkip: Combatting Statistical Heterogeneity with Federated Skip
Aggregation [95.85026305874824]
We introduce a data-driven approach called FedSkip to improve the client optima by periodically skipping federated averaging and scattering local models to the cross devices.
We conduct extensive experiments on a range of datasets to demonstrate that FedSkip achieves much higher accuracy, better aggregation efficiency and competing communication efficiency.
arXiv Detail & Related papers (2022-12-14T13:57:01Z) - DRFLM: Distributionally Robust Federated Learning with Inter-client
Noise via Local Mixup [58.894901088797376]
federated learning has emerged as a promising approach for training a global model using data from multiple organizations without leaking their raw data.
We propose a general framework to solve the above two challenges simultaneously.
We provide comprehensive theoretical analysis including robustness analysis, convergence analysis, and generalization ability.
arXiv Detail & Related papers (2022-04-16T08:08:29Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
Federated learning (FL) is a promising strategy for performing privacy-preserving, distributed learning with a network of clients (i.e., edge devices)
arXiv Detail & Related papers (2021-11-28T19:03:39Z) - A Unified Linear Speedup Analysis of Federated Averaging and Nesterov
FedAvg [49.76940694847521]
Federated learning (FL) learns a model jointly from a set of participating devices without sharing each other's privately held data.
In this paper, we focus on Federated Averaging (FedAvg), one of the most popular and effective FL algorithms in use today.
We show that FedAvg enjoys linear speedup in each case, although with different convergence rates and communication efficiencies.
arXiv Detail & Related papers (2020-07-11T05:59:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.