Developing hybrid mechanistic and data-driven personalized prediction models for platelet dynamics
- URL: http://arxiv.org/abs/2505.21204v1
- Date: Tue, 27 May 2025 13:52:23 GMT
- Title: Developing hybrid mechanistic and data-driven personalized prediction models for platelet dynamics
- Authors: Marie Steinacker, Yuri Kheifetz, Markus Scholz,
- Abstract summary: Hematotoxicity, drug-induced damage to the blood-forming system, is a frequent side effect of chemotherapy.<n>Current mechanistic models often struggle to accurately forecast outcomes for patients with irregular or atypical trajectories.<n>We develop and compare hybrid mechanistic and data-driven approaches for individualized time series modeling of platelet counts during chemotherapy.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hematotoxicity, drug-induced damage to the blood-forming system, is a frequent side effect of cytotoxic chemotherapy and poses a significant challenge in clinical practice due to its high inter-patient variability and limited predictability. Current mechanistic models often struggle to accurately forecast outcomes for patients with irregular or atypical trajectories. In this study, we develop and compare hybrid mechanistic and data-driven approaches for individualized time series modeling of platelet counts during chemotherapy. We consider hybrid models that combine mechanistic models with neural networks, known as universal differential equations. As a purely data-driven alternative, we utilize a nonlinear autoregressive exogenous model using gated recurrent units as the underlying architecture. These models are evaluated across a range of real patient scenarios, varying in data availability and sparsity, to assess predictive performance. Our findings demonstrate that data-driven methods, when provided with sufficient data, significantly improve prediction accuracy, particularly for high-risk patients with irregular platelet dynamics. This highlights the potential of data-driven approaches in enhancing clinical decision-making. In contrast, hybrid and mechanistic models are superior in scenarios with limited or sparse data. The proposed modeling and comparison framework is generalizable and could be extended to predict other treatment-related toxicities, offering broad applicability in personalized medicine.
Related papers
- On Arbitrary Predictions from Equally Valid Models [49.56463611078044]
Model multiplicity refers to multiple machine learning models that admit conflicting predictions for the same patient.<n>We show that even small ensembles can mitigate/eliminate predictive multiplicity in practice.
arXiv Detail & Related papers (2025-07-25T16:15:59Z) - Predictive Causal Inference via Spatio-Temporal Modeling and Penalized Empirical Likelihood [0.0]
This study introduces an integrated framework for predictive causal inference designed to overcome limitations in conventional single model approaches.<n> Specifically, we combine a Hidden Markov Model for spatial health state estimation with a Multi Task and Multi Graph Convolutional Network (MTGCN) for capturing temporal outcome trajectories.<n>To demonstrate its utility, we focus on clinical domains such as cancer, dementia, Parkinson disease, where treatment effects are challenging to observe directly.
arXiv Detail & Related papers (2025-07-11T03:11:15Z) - Graph Neural Network Surrogates to leverage Mechanistic Expert Knowledge towards Reliable and Immediate Pandemic Response [41.94295877935867]
We build upon a spatially and demographically resolved infectious disease metapopulation model and train a graph neural network for data sets representing prevaccination phases of a pandemic.<n>The approach yields large potential for on-the-fly execution and, thus, facilitates integration into low-barrier web applications for use in pandemic decision-making.
arXiv Detail & Related papers (2024-11-10T15:54:09Z) - Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
We propose a deep latent state-space generative model to capture the interactions among different types of correlated clinical events.
Our method also uncovers meaningful insights about the latent correlations among mortality and different types of organ failures.
arXiv Detail & Related papers (2024-07-28T02:42:36Z) - Kernel Cox partially linear regression: building predictive models for
cancer patients' survival [4.230753712933184]
We build a kernel Cox proportional hazards semi-parametric model and propose a novel regularized garrotized kernel machine (RegGKM) method to fit the model.
We use the kernel machine method to describe the complex relationship between survival and predictors, while automatically removing irrelevant parametric and non-parametric predictors.
Our results can help classify patients into groups with different death risks, facilitating treatment for better clinical outcomes.
arXiv Detail & Related papers (2023-10-11T04:27:54Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Model Based Reinforcement Learning for Personalized Heparin Dosing [0.0]
We propose a framework to address the challenge of optimizing personalized heparin doses.
We use a predictive model parameterized individually by patient to predict future therapeutic effects.
We then leverage this model using a scenario generation based approach that is capable of ensuring patient safety.
arXiv Detail & Related papers (2023-04-19T22:37:12Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
Estimating personalized effects of treatments is a complex, yet pervasive problem.
Recent developments in the machine learning literature on heterogeneous treatment effect estimation gave rise to many sophisticated, but opaque, tools.
We use post-hoc feature importance methods to identify features that influence the model's predictions.
arXiv Detail & Related papers (2022-06-16T17:59:05Z) - Probabilistic AutoRegressive Neural Networks for Accurate Long-range
Forecasting [6.295157260756792]
We introduce the Probabilistic AutoRegressive Neural Networks (PARNN)
PARNN is capable of handling complex time series data exhibiting non-stationarity, nonlinearity, non-seasonality, long-range dependence, and chaotic patterns.
We evaluate the performance of PARNN against standard statistical, machine learning, and deep learning models, including Transformers, NBeats, and DeepAR.
arXiv Detail & Related papers (2022-04-01T17:57:36Z) - Unifying Epidemic Models with Mixtures [28.771032745045428]
The COVID-19 pandemic has emphasized the need for a robust understanding of epidemic models.
Here, we introduce a simple mixture-based model which bridges the two approaches.
Although the model is non-mechanistic, we show that it arises as the natural outcome of a process based on a networked SIR framework.
arXiv Detail & Related papers (2022-01-07T19:42:05Z) - Integrating Expert ODEs into Neural ODEs: Pharmacology and Disease
Progression [71.7560927415706]
latent hybridisation model (LHM) integrates a system of expert-designed ODEs with machine-learned Neural ODEs to fully describe the dynamics of the system.
We evaluate LHM on synthetic data as well as real-world intensive care data of COVID-19 patients.
arXiv Detail & Related papers (2021-06-05T11:42:45Z) - Neural Pharmacodynamic State Space Modeling [1.589915930948668]
We propose a deep generative model that makes use of a novel attention-based neural architecture inspired by the physics of how treatments affect disease state.
Our proposed model yields significant improvements in generalization and, on real-world clinical data, provides interpretable insights into the dynamics of cancer progression.
arXiv Detail & Related papers (2021-02-22T17:51:11Z) - A General Framework for Survival Analysis and Multi-State Modelling [70.31153478610229]
We use neural ordinary differential equations as a flexible and general method for estimating multi-state survival models.
We show that our model exhibits state-of-the-art performance on popular survival data sets and demonstrate its efficacy in a multi-state setting.
arXiv Detail & Related papers (2020-06-08T19:24:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.