論文の概要: Copresheaf Topological Neural Networks: A Generalized Deep Learning Framework
- arxiv url: http://arxiv.org/abs/2505.21251v2
- Date: Wed, 28 May 2025 13:03:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-29 12:33:41.791827
- Title: Copresheaf Topological Neural Networks: A Generalized Deep Learning Framework
- Title(参考訳): Copresheaf Topological Neural Networks: 一般化されたディープラーニングフレームワーク
- Authors: Mustafa Hajij, Lennart Bastian, Sarah Osentoski, Hardik Kabaria, John L. Davenport, Sheik Dawood, Balaji Cherukuri, Joseph G. Kocheemoolayil, Nastaran Shahmansouri, Adrian Lew, Theodore Papamarkou, Tolga Birdal,
- Abstract要約: 我々は,多種多様なディープラーニングアーキテクチャをカプセル化した,強力かつ統一的なフレームワークであるCTNNを紹介する。
CTNNは、特定のタスクやデータタイプに適したニューラルネットワークアーキテクチャの原則設計に対処する。
構造化データベンチマークによる実験結果から,CTNNは従来のベースラインを一貫して上回っていることが示された。
- 参考スコア(独自算出の注目度): 10.470880055362406
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We introduce copresheaf topological neural networks (CTNNs), a powerful and unifying framework that encapsulates a wide spectrum of deep learning architectures, designed to operate on structured data: including images, point clouds, graphs, meshes, and topological manifolds. While deep learning has profoundly impacted domains ranging from digital assistants to autonomous systems, the principled design of neural architectures tailored to specific tasks and data types remains one of the field's most persistent open challenges. CTNNs address this gap by grounding model design in the language of copresheaves, a concept from algebraic topology that generalizes and subsumes most practical deep learning models in use today. This abstract yet constructive formulation yields a rich design space from which theoretically sound and practically effective solutions can be derived to tackle core challenges in representation learning: long-range dependencies, oversmoothing, heterophily, and non-Euclidean domains. Our empirical results on structured data benchmarks demonstrate that CTNNs consistently outperform conventional baselines, particularly in tasks requiring hierarchical or localized sensitivity. These results underscore CTNNs as a principled, multi-scale foundation for the next generation of deep learning architectures.
- Abstract(参考訳): 我々は、画像、点雲、グラフ、メッシュ、トポロジ多様体を含む構造化データを操作するように設計された、幅広いディープラーニングアーキテクチャをカプセル化した強力で統一されたフレームワークであるCTNNを紹介する。
ディープラーニングはデジタルアシスタントから自律システムまで、ドメインに大きな影響を与えてきたが、特定のタスクやデータタイプに合わせて設計されたニューラルネットワークの設計は、この分野の最も永続的なオープンな課題の1つだ。
CTNNは、現在使われている最も実用的なディープラーニングモデルを一般化し、仮定する代数的トポロジーの概念であるコレシーブ言語でモデル設計を基礎づけることによって、このギャップに対処する。
この抽象的だが構成的な定式化は、理論上は健全で実用的な解決策が表現学習における中核的な課題に取り組むために導出されうるリッチな設計空間、すなわち長距離依存、過度な平滑化、ヘテロフィリー、非ユークリッド領域である。
構造化されたデータベンチマークによる実験結果から,CTNNは従来のベースライン,特に階層的あるいは局所的な感度を必要とするタスクにおいて,一貫して優れていたことが分かる。
これらの結果は,次世代ディープラーニングアーキテクチャの原則的,マルチスケールな基盤として,CTNNの基盤となる。
関連論文リスト
- Conservation-informed Graph Learning for Spatiotemporal Dynamics Prediction [84.26340606752763]
本稿では,保護インフォームドGNN(CiGNN)について紹介する。
このネットワークは、保守的かつ非保守的な情報が、潜時的行進戦略によって多次元空間を通過する対称性による一般的な対称性保存則に従うように設計されている。
結果は,CiGNNが顕著なベースライン精度と一般化性を示し,様々な時間的ダイナミクスの予測のための学習に容易に適用可能であることを示した。
論文 参考訳(メタデータ) (2024-12-30T13:55:59Z) - Homological Convolutional Neural Networks [4.615338063719135]
本稿では,トポロジ的に制約されたネットワーク表現を通じて,データ構造構造を利用した新しいディープラーニングアーキテクチャを提案する。
5つの古典的な機械学習モデルと3つのディープラーニングモデルに対して、18のベンチマークデータセットでモデルをテストします。
論文 参考訳(メタデータ) (2023-08-26T08:48:51Z) - Contextualizing MLP-Mixers Spatiotemporally for Urban Data Forecast at Scale [54.15522908057831]
本稿では,STTD予測を大規模に行うためのコンピュータ・ミクサーの適応版を提案する。
我々の結果は、この単純な効率の良いソリューションが、いくつかのトラフィックベンチマークでテストした場合、SOTAベースラインに匹敵する可能性があることを驚くほど示している。
本研究は, 実世界のSTTD予測において, 簡便な有効モデルの探索に寄与する。
論文 参考訳(メタデータ) (2023-07-04T05:19:19Z) - Homological Neural Networks: A Sparse Architecture for Multivariate
Complexity [0.0]
我々は,基礎となるデータのホモロジー構造上に構築された,疎密な高階グラフィカルアーキテクチャを特徴とする,新しいディープニューラルネットワークユニットを開発する。
その結果、この新しい設計の利点は、ごく少数のパラメータだけで最先端の機械学習モデルとディープラーニングモデルの結果を結び付けるか、克服することができる。
論文 参考訳(メタデータ) (2023-06-27T09:46:16Z) - Deep neural networks architectures from the perspective of manifold
learning [0.0]
本稿では,ゲノメトリとトポロジの観点から,ニューラルネットワークアーキテクチャの包括的比較と記述を行う。
我々は、ニューラルネットワークの内部表現と、異なる層上のデータ多様体のトポロジーと幾何学の変化のダイナミクスに焦点を当てる。
論文 参考訳(メタデータ) (2023-06-06T04:57:39Z) - The Neural Race Reduction: Dynamics of Abstraction in Gated Networks [12.130628846129973]
本稿では,情報フローの経路が学習力学に与える影響をスキーマ化するGated Deep Linear Networkフレームワークを紹介する。
正確な還元と、特定の場合において、学習のダイナミクスに対する正確な解が導出されます。
我々の研究は、ニューラルネットワークと学習に関する一般的な仮説を生み出し、より複雑なアーキテクチャの設計を理解するための数学的アプローチを提供する。
論文 参考訳(メタデータ) (2022-07-21T12:01:03Z) - Bridging the Gap between Spatial and Spectral Domains: A Unified
Framework for Graph Neural Networks [61.17075071853949]
グラフニューラルネットワーク(GNN)は、古典的なディープラーニングが容易に管理できないグラフ構造データを扱うように設計されている。
本研究の目的は,スペクトルグラフと近似理論に基づいてGNNを統合する統一フレームワークを確立することである。
論文 参考訳(メタデータ) (2021-07-21T17:34:33Z) - Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges [50.22269760171131]
過去10年間、データサイエンスと機械学習の実験的な革命が、ディープラーニングの手法によって生まれた。
このテキストは、統一幾何学的原理によって事前に定義された規則性を公開することに関するものである。
CNN、RNN、GNN、Transformersなど、最も成功したニューラルネットワークアーキテクチャを研究するための一般的な数学的フレームワークを提供する。
論文 参考訳(メタデータ) (2021-04-27T21:09:51Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
本稿では,ネットワークを解析のための完全なグラフに表現するためのトポロジ的視点を提案する。
接続の規模を反映したエッジに学習可能なパラメータを割り当てることにより、学習プロセスを異なる方法で行うことができる。
この学習プロセスは既存のネットワークと互換性があり、より大きな検索空間と異なるタスクへの適応性を持っている。
論文 参考訳(メタデータ) (2020-08-19T04:53:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。